Inspired by the classical setting, Goss defined -series attached to Drinfeld modules. In this paper, for a fixed choice of a power of a prime number and a given Drinfeld module of rank 2 with a certain condition on its coefficients, we give explicit formulas for the values of Goss -series attached to at positive integers such that in terms of polylogarithms and coefficients of the logarithm series of .
Inspiré par le cadre classique, Goss a défini des séries attachées aux modules de Drinfeld. Dans cet article, pour une puissance fixée d’un nombre premier et un module de Drinfeld donné de rang 2 avec une certaine condition sur ses coefficients, nous donnons des formules explicites pour les valeurs de la série de Goss attachée à aux entiers positifs tels que en termes de polylogarithmes et coefficients de la série logarithmique de .
Revised:
Accepted:
Published online:
Keywords: Drinfeld modules, $L$-series, $t$-modules
Oğuz Gezmiş 1
@article{JTNB_2021__33_2_511_0, author = {O\u{g}uz Gezmi\c{s}}, title = {Special values of {Goss} $L$-series attached to {Drinfeld} modules of rank 2}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {511--552}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {2}, year = {2021}, doi = {10.5802/jtnb.1168}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1168/} }
TY - JOUR AU - Oğuz Gezmiş TI - Special values of Goss $L$-series attached to Drinfeld modules of rank 2 JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 511 EP - 552 VL - 33 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1168/ DO - 10.5802/jtnb.1168 LA - en ID - JTNB_2021__33_2_511_0 ER -
%0 Journal Article %A Oğuz Gezmiş %T Special values of Goss $L$-series attached to Drinfeld modules of rank 2 %J Journal de théorie des nombres de Bordeaux %D 2021 %P 511-552 %V 33 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1168/ %R 10.5802/jtnb.1168 %G en %F JTNB_2021__33_2_511_0
Oğuz Gezmiş. Special values of Goss $L$-series attached to Drinfeld modules of rank 2. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 2, pp. 511-552. doi : 10.5802/jtnb.1168. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1168/
[1] -motives, Duke Math. J., Volume 53 (1986) no. 2, pp. 457-502 | Zbl
[2] Tensor powers of the Carlitz module and zeta values, Ann. Math., Volume 132 (1990) no. 1, pp. 159-191 | DOI | MR | Zbl
[3] A class formula for admissible Anderson modules (2020) (https://hal.archives-ouvertes.fr/hal-02490566)
[4] On special -values of -modules, Adv. Math., Volume 216 (2020), 107313, 32 pages | DOI | MR | Zbl
[5] Recent developments in the theory of Anderson modules, Acta Math. Vietnam., Volume 45 (2020) no. 1, pp. 199-216 | DOI | MR | Zbl
[6] Arithmetic of function field units, Math. Ann., Volume 367 (2017) no. 1-2, pp. 501-579 | DOI | MR | Zbl
[7] Cohomological Theory of Crystals over Function Fields, EMS Tracts in Mathematics, 9, European Mathematical Society, 2009 | MR | Zbl
[8] Linear independence and divided derivatives of a Drinfeld module. I., Number Theory in Progress, Vol. 1 (Zakopane-Kościelisko, 1997), Volume 1, Walter de Gruyter, 1997, pp. 47-61 | Zbl
[9] A rapid introduction to Drinfeld modules, -modules, and -motives, -motives: Hodge structures, transcendence and other motivic aspects (EMS Series of Congress Reports), European Mathematical Society, 2020, pp. 3-30 | Zbl
[10] On certain functions connected with polynomials in a Galois field, Duke Math. J., Volume 1 (1935) no. 2, pp. 137-168 | MR | Zbl
[11] A class of polynomials, Trans. Am. Math. Soc., Volume 43 (1938) no. 2, pp. 167-182 | DOI | Zbl
[12] Log-algebraic identities on Drinfeld modules and special -values, J. Lond. Math. Soc., Volume 97 (2018) no. 2, pp. 125-144 | DOI | MR | Zbl
[13] Taylor coefficients of Anderson-Thakur series and explicit formulae, Math. Ann., Volume 379 (2021) no. 3-4, pp. 1425-1474 | DOI | MR | Zbl
[14] On multiple polylogarithms in characteristic : -adic vanishing versus -adic Eulerianness, Int. Math. Res. Not., Volume 2019 (2019) no. 3, pp. 923-947 | DOI | MR | Zbl
[15] The digit principle, J. Number Theory, Volume 84 (2000) no. 2, pp. 230-257 | DOI | MR | Zbl
[16] Towards a class number formula for Drinfeld modules, Ph. D. Thesis, University of Amsterdam / KU Leuven (2016) (available at http://hdl.handle.net/11245/1.545161)
[17] La conjecture de Weil. I., Publ. Math., Inst. Hautes Étud. Sci., Volume 43 (1974), pp. 273-307 | DOI | Numdam | Zbl
[18] Explicit formulas for Drinfeld modules and their periods, J. Number Theory, Volume 133 (2013) no. 6, pp. 1864-1886 | DOI | MR | Zbl
[19] Special -values of abelian -modules, J. Number Theory, Volume 147 (2015), pp. 300-325 | DOI | MR | Zbl
[20] Binomial coefficients modulo a prime, Am. Math. Mon., Volume 54 (1947) no. 10, pp. 589-592 | DOI | MR | Zbl
[21] -motives and Galois representations, Ph. D. Thesis, Universiteit Gent (2001) | MR
[22] Deformation of multiple zeta values and their logarithmic interpretation in positive characteristic, Doc. Math., Volume 25 (2020), pp. 2355-2411 | MR | Zbl
[23] -series of -motives and Drinfeld modules, The arithmetic of function fields (Columbus, OH, 1991) (Ohio State University Mathematical Research Institute Publications), Volume 2, Walter de Gruyter, 1991, pp. 313-402 | Zbl
[24] Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 35, Springer, 1996 | MR | Zbl
[25] Tensor products of Drinfeld modules and -adic representations, Manuscr. Math., Volume 79 (1993) no. 3-4, pp. 307-327 | DOI | MR | Zbl
[26] Pink’s theory of Hodge structures and the Hodge conjecture over function fields, -motives: Hodge structures, transcendence and other motivic aspects (EMS Series of Congress Reports), European Mathematical Society, 2020, pp. 31-182 | Zbl
[27] Explicit class field theory for rational function fields, Trans. Am. Math. Soc., Volume 189 (1974), pp. 77-91 | DOI | MR | Zbl
[28] On characteristic polynomials of geometric Frobenius associated to Drinfeld modules, Compos. Math., Volume 122 (2000) no. 3, pp. 261-280 | DOI | MR | Zbl
[29] The Hodge Conjecture for Function Fields, Ph. D. Thesis, University of Muenster (2010)
[30] Abelian varieties, -adic representations, and -independence, Math. Ann., Volume 302 (1995) no. 3, pp. 561-579 | DOI | MR | Zbl
[31] Shtuka cohomology and special values of Goss L-functions, Ph. D. Thesis, University of Amsterdam (2018) (available at http://hdl.handle.net/1887/61145)
[32] Log-algebraicity on tensor powers of the Carlitz module and special values of Goss -functions (in preparation)
[33] Abelian -adic representations and elliptic curves, W. A. Benjamin, 1968 (McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute) | Zbl
[34] Algebraic monodromy groups of -motives, Ph. D. Thesis, Eidgenössische Technische Hochschule Zürich (2007)
[35] On -Motifs, Ph. D. Thesis, Rijksuniversiteit Groningen (2007)
[36] Artin -motifs, J. Number Theory, Volume 129 (2009) no. 1, pp. 142-157 | DOI | MR | Zbl
[37] Special -values of -motives: a conjecture, Int. Math. Res. Not., Volume 2009 (2009) no. 16, pp. 2957-2977 | DOI | MR | Zbl
[38] Special -values of Drinfeld modules, Ann. Math., Volume 75 (2012) no. 1, pp. 369-391 | DOI | MR | Zbl
[39] -functions of -sheaves and Drinfeld modules, J. Am. Math. Soc., Volume 9 (1996) no. 3, pp. 755-781 | DOI | MR
[40] Function Field Arithmetic, World Scientific, 2004 | Zbl
[41] Function field modular forms and higher-derivations, Math. Ann., Volume 311 (1998) no. 3, pp. 439-466 | DOI | MR | Zbl
Cited by Sources: