Special values of Goss L-series attached to Drinfeld modules of rank 2
Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 2, pp. 511-552.

Inspired by the classical setting, Goss defined L-series attached to Drinfeld modules. In this paper, for a fixed choice of a power q of a prime number and a given Drinfeld module ϕ of rank 2 with a certain condition on its coefficients, we give explicit formulas for the values of Goss L-series attached to ϕ at positive integers n such that 2n+1q in terms of polylogarithms and coefficients of the logarithm series of ϕ.

Inspiré par le cadre classique, Goss a défini des séries L attachées aux modules de Drinfeld. Dans cet article, pour une puissance fixée q d’un nombre premier et un module de Drinfeld donné ϕ de rang 2 avec une certaine condition sur ses coefficients, nous donnons des formules explicites pour les valeurs de la série L de Goss attachée à ϕ aux entiers positifs n tels que 2n+1q en termes de polylogarithmes et coefficients de la série logarithmique de ϕ.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1168
Classification: 11G09, 11M38
Keywords: Drinfeld modules, $L$-series, $t$-modules

Oğuz Gezmiş 1

1 National Center for Theoretical Sciences National Taiwan University Taipei, Taiwan R.O.C.
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JTNB_2021__33_2_511_0,
     author = {O\u{g}uz Gezmi\c{s}},
     title = {Special values of {Goss} $L$-series attached to {Drinfeld} modules of rank 2},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {511--552},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {33},
     number = {2},
     year = {2021},
     doi = {10.5802/jtnb.1168},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1168/}
}
TY  - JOUR
AU  - Oğuz Gezmiş
TI  - Special values of Goss $L$-series attached to Drinfeld modules of rank 2
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2021
SP  - 511
EP  - 552
VL  - 33
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1168/
DO  - 10.5802/jtnb.1168
LA  - en
ID  - JTNB_2021__33_2_511_0
ER  - 
%0 Journal Article
%A Oğuz Gezmiş
%T Special values of Goss $L$-series attached to Drinfeld modules of rank 2
%J Journal de théorie des nombres de Bordeaux
%D 2021
%P 511-552
%V 33
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1168/
%R 10.5802/jtnb.1168
%G en
%F JTNB_2021__33_2_511_0
Oğuz Gezmiş. Special values of Goss $L$-series attached to Drinfeld modules of rank 2. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 2, pp. 511-552. doi : 10.5802/jtnb.1168. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1168/

[1] Greg W. Anderson t-motives, Duke Math. J., Volume 53 (1986) no. 2, pp. 457-502 | Zbl

[2] Greg W. Anderson; Dinesh S. Thakur Tensor powers of the Carlitz module and zeta values, Ann. Math., Volume 132 (1990) no. 1, pp. 159-191 | DOI | MR | Zbl

[3] Bruno Anglès; Tuan Ngo Dac; Floric Tavares Ribeiro A class formula for admissible Anderson modules (2020) (https://hal.archives-ouvertes.fr/hal-02490566)

[4] Bruno Anglès; Tuan Ngo Dac; Floric Tavares Ribeiro On special L-values of t-modules, Adv. Math., Volume 216 (2020), 107313, 32 pages | DOI | MR | Zbl

[5] Bruno Anglès; Tuan Ngo Dac; Floric Tavares Ribeiro Recent developments in the theory of Anderson modules, Acta Math. Vietnam., Volume 45 (2020) no. 1, pp. 199-216 | DOI | MR | Zbl

[6] Bruno Anglès; Floric Tavares Ribeiro Arithmetic of function field units, Math. Ann., Volume 367 (2017) no. 1-2, pp. 501-579 | DOI | MR | Zbl

[7] Gebhard Böckle; Richard Pink Cohomological Theory of Crystals over Function Fields, EMS Tracts in Mathematics, 9, European Mathematical Society, 2009 | MR | Zbl

[8] W. Dale Brownawell Linear independence and divided derivatives of a Drinfeld module. I., Number Theory in Progress, Vol. 1 (Zakopane-Kościelisko, 1997), Volume 1, Walter de Gruyter, 1997, pp. 47-61 | Zbl

[9] W. Dale Brownawell; Matthew A. Papanikolas A rapid introduction to Drinfeld modules, t-modules, and t-motives, t-motives: Hodge structures, transcendence and other motivic aspects (EMS Series of Congress Reports), European Mathematical Society, 2020, pp. 3-30 | Zbl

[10] Leonard Carlitz On certain functions connected with polynomials in a Galois field, Duke Math. J., Volume 1 (1935) no. 2, pp. 137-168 | MR | Zbl

[11] Leonard Carlitz A class of polynomials, Trans. Am. Math. Soc., Volume 43 (1938) no. 2, pp. 167-182 | DOI | Zbl

[12] Chieh-Yu Chang; Ahmad El-Guindy; Matthew A. Papanikolas Log-algebraic identities on Drinfeld modules and special L-values, J. Lond. Math. Soc., Volume 97 (2018) no. 2, pp. 125-144 | DOI | MR | Zbl

[13] Chieh-Yu Chang; Nathan Green; Yoshinori Mishiba Taylor coefficients of Anderson-Thakur series and explicit formulae, Math. Ann., Volume 379 (2021) no. 3-4, pp. 1425-1474 | DOI | MR | Zbl

[14] Chieh-Yu Chang; Yoshinori Mishiba On multiple polylogarithms in characteristic p: v-adic vanishing versus -adic Eulerianness, Int. Math. Res. Not., Volume 2019 (2019) no. 3, pp. 923-947 | DOI | MR | Zbl

[15] Keith Conrad The digit principle, J. Number Theory, Volume 84 (2000) no. 2, pp. 230-257 | DOI | MR | Zbl

[16] C. Debry Towards a class number formula for Drinfeld modules, Ph. D. Thesis, University of Amsterdam / KU Leuven (2016) (available at http://hdl.handle.net/11245/1.545161)

[17] Pierre Deligne La conjecture de Weil. I., Publ. Math., Inst. Hautes Étud. Sci., Volume 43 (1974), pp. 273-307 | DOI | Numdam | Zbl

[18] Ahmad El-Guindy; Matthew A. Papanikolas Explicit formulas for Drinfeld modules and their periods, J. Number Theory, Volume 133 (2013) no. 6, pp. 1864-1886 | DOI | MR | Zbl

[19] Jiangxue Fang Special L-values of abelian t-modules, J. Number Theory, Volume 147 (2015), pp. 300-325 | DOI | MR | Zbl

[20] Nathan J. Fine Binomial coefficients modulo a prime, Am. Math. Mon., Volume 54 (1947) no. 10, pp. 589-592 | DOI | MR | Zbl

[21] Francis Gardeyn t-motives and Galois representations, Ph. D. Thesis, Universiteit Gent (2001) | MR

[22] Oğuz Gezmiş Deformation of multiple zeta values and their logarithmic interpretation in positive characteristic, Doc. Math., Volume 25 (2020), pp. 2355-2411 | MR | Zbl

[23] David Goss L-series of t-motives and Drinfeld modules, The arithmetic of function fields (Columbus, OH, 1991) (Ohio State University Mathematical Research Institute Publications), Volume 2, Walter de Gruyter, 1991, pp. 313-402 | Zbl

[24] David Goss Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 35, Springer, 1996 | MR | Zbl

[25] Yoshinori Hamahata Tensor products of Drinfeld modules and v-adic representations, Manuscr. Math., Volume 79 (1993) no. 3-4, pp. 307-327 | DOI | MR | Zbl

[26] Urs Hartl; Ann-Kristin Juschka Pink’s theory of Hodge structures and the Hodge conjecture over function fields, t-motives: Hodge structures, transcendence and other motivic aspects (EMS Series of Congress Reports), European Mathematical Society, 2020, pp. 31-182 | Zbl

[27] David R. Hayes Explicit class field theory for rational function fields, Trans. Am. Math. Soc., Volume 189 (1974), pp. 77-91 | DOI | MR | Zbl

[28] Liang-Chung Hsia; Jing Yu On characteristic polynomials of geometric Frobenius associated to Drinfeld modules, Compos. Math., Volume 122 (2000) no. 3, pp. 261-280 | DOI | MR | Zbl

[29] Ann-Kristin Juschka The Hodge Conjecture for Function Fields, Ph. D. Thesis, University of Muenster (2010)

[30] Michael J. Larsen; Richard Pink Abelian varieties, l-adic representations, and l-independence, Math. Ann., Volume 302 (1995) no. 3, pp. 561-579 | DOI | MR | Zbl

[31] Maxim Mornev Shtuka cohomology and special values of Goss L-functions, Ph. D. Thesis, University of Amsterdam (2018) (available at http://hdl.handle.net/1887/61145)

[32] Matthew A. Papanikolas Log-algebraicity on tensor powers of the Carlitz module and special values of Goss L-functions (in preparation)

[33] Jean-Pierre Serre Abelian l-adic representations and elliptic curves, W. A. Benjamin, 1968 (McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute) | Zbl

[34] Nicolas R. Stalder Algebraic monodromy groups of A-motives, Ph. D. Thesis, Eidgenössische Technische Hochschule Zürich (2007)

[35] Lenny Taelman On t-Motifs, Ph. D. Thesis, Rijksuniversiteit Groningen (2007)

[36] Lenny Taelman Artin t-motifs, J. Number Theory, Volume 129 (2009) no. 1, pp. 142-157 | DOI | MR | Zbl

[37] Lenny Taelman Special L-values of t-motives: a conjecture, Int. Math. Res. Not., Volume 2009 (2009) no. 16, pp. 2957-2977 | DOI | MR | Zbl

[38] Lenny Taelman Special L-values of Drinfeld modules, Ann. Math., Volume 75 (2012) no. 1, pp. 369-391 | DOI | MR | Zbl

[39] Yuichiro Taguchi; Daqing Wan L-functions of ϕ-sheaves and Drinfeld modules, J. Am. Math. Soc., Volume 9 (1996) no. 3, pp. 755-781 | DOI | MR

[40] Dinesh S. Thakur Function Field Arithmetic, World Scientific, 2004 | Zbl

[41] Yukiko Uchino; Takakazu Satoh Function field modular forms and higher-derivations, Math. Ann., Volume 311 (1998) no. 3, pp. 439-466 | DOI | MR | Zbl

Cited by Sources: