We provide a new, elementary proof of the multiplicative independence of pairwise distinct
Nous offrons une nouvelle preuve élémentaire de l’indépendance multiplicative de
Révisé le :
Accepté le :
Publié le :
Mots-clés : Modular functions, multiplicative independence, Zilber–Pink conjecture
Guy Fowler 1

@article{JTNB_2021__33_2_459_0, author = {Guy Fowler}, title = {Multiplicative independence of modular functions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {459--509}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {2}, year = {2021}, doi = {10.5802/jtnb.1167}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1167/} }
TY - JOUR AU - Guy Fowler TI - Multiplicative independence of modular functions JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 459 EP - 509 VL - 33 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1167/ DO - 10.5802/jtnb.1167 LA - en ID - JTNB_2021__33_2_459_0 ER -
%0 Journal Article %A Guy Fowler %T Multiplicative independence of modular functions %J Journal de théorie des nombres de Bordeaux %D 2021 %P 459-509 %V 33 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1167/ %R 10.5802/jtnb.1167 %G en %F JTNB_2021__33_2_459_0
Guy Fowler. Multiplicative independence of modular functions. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 2, pp. 459-509. doi : 10.5802/jtnb.1167. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1167/
[1] Tameness of holomorphic closure dimension in a semialgebraic set, Math. Ann., Volume 355 (2013) no. 3, pp. 985-1005 | DOI | MR | Zbl
[2] Finitude des couples d’invariants modulaires singuliers sur une courbe algébrique plane non modulaire, J. Reine Angew. Math., Volume 505 (1998), pp. 203-208 | DOI | Zbl
[3] On Schanuel’s conjectures, Ann. Math., Volume 93 (1971), pp. 252-268 | MR | Zbl
[4] Collinear CM-points, Algebra Number Theory, Volume 11 (2017) no. 5, pp. 1047-1087 | DOI | MR | Zbl
[5] Rational products of singular moduli, J. Number Theory, Volume 158 (2016), pp. 397-410 | DOI | MR | Zbl
[6] Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2006 | MR | Zbl
[7] Anomalous subvarieties – structure theorems and applications, Int. Math. Res. Not., Volume 2007 (2007) no. 19, rnm057, 33 pages | MR | Zbl
[8] Automorphic forms on
[9] Automorphic forms on
[10] On alternating and symmetric groups as Galois groups, Isr. J. Math., Volume 142 (2004), pp. 47-60 | DOI | MR | Zbl
[11] Bertini irreducibility theorems over finite fields, J. Am. Math. Soc., Volume 29 (2016) no. 1, pp. 81-94 corrigendum in ibid. 32 (2019), no. 2, p. 606-607 | DOI | MR | Zbl
[12] Primes of the form
[13] Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, London Mathematical Society, 1998 | MR | Zbl
[14] On the real exponential field with restricted analytic functions, Isr. J. Math., Volume 85 (1994) no. 1, pp. 1-3 corrigendum in ibid. 92 (1995), no. 1-3, p. 427 | MR | Zbl
[15] On singular moduli, J. Reine Angew. Math., Volume 355 (1985), pp. 191-220 | MR | Zbl
[16] Singular moduli that are algebraic units, Algebra Number Theory, Volume 9 (2015) no. 7, pp. 1515-1524 | DOI | MR | Zbl
[17] Some unlikely intersections beyond André–Oort, Compos. Math., Volume 148 (2012) no. 1, pp. 1-27 | DOI | Zbl
[18] O-minimality and certain atypical intersections, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 4, pp. 813-858 | DOI | MR | Zbl
[19] Diophantine geometry. An introduction, Graduate Texts in Mathematics, 201, Springer, 2000 | Zbl
[20] Uniformly counting points of bounded height, Acta Arith., Volume 111 (2004) no. 3, pp. 277-297 | DOI | MR | Zbl
[21] The web of modularity: arithmetic of the coefficients of modular forms and
[22] On the algebraic points of a definable set, Sel. Math., New Ser., Volume 15 (2009) no. 1, pp. 151-170 | DOI | MR | Zbl
[23] Special point problems with elliptic modular surfaces, Mathematika, Volume 60 (2014) no. 1, pp. 1-31 | DOI | MR | Zbl
[24] Independence of CM points in elliptic curves to appear in J. Eur. Math. Soc. (JEMS)
[25] Ax–Schanuel for the
[26] Multiplicative relations among singular moduli, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (2017) no. 4, pp. 1357-1382 | MR | Zbl
[27] The rational points of a definable set, Duke Math. J., Volume 133 (2006) no. 3, pp. 591-616 | MR | Zbl
[28] A combination of the conjectures of Mordell–Lang and André–Oort, Geometric methods in algebra and number theory (Progress in Mathematics), Volume 235, Birkhäuser, 2005, pp. 251-282 | DOI | Zbl
[29] A note on the degree of field extensions involving classical and nonholomorphic singular moduli (2017) (https://arxiv.org/abs/1702.01950)
[30] Exponential sums equations and the Schanuel conjecture, J. Lond. Math. Soc., Volume 65 (2002) no. 1, pp. 27-44 | DOI | MR | Zbl
Cité par Sources :