We construct a tower of fields from the rings which parametrize pairs , where is a deformation of a fixed one-dimensional formal group of finite height , together with a Drinfeld level- structure . We choose principal prime ideals in each ring in a compatible way and consider the field obtained by localizing at and passing to the field of fractions of the completion. By taking the compositum of with the completion of a certain unramified extension of , we obtain a tower of fields which we prove to be strictly deeply ramified in the sense of Scholl. When we also investigate the question of whether this is a Kummer tower.
On construit une tour de corps à partir des anneaux qui paramétrisent les couples , où est une déformation d’un groupe formel fixé de dimension un et de hauteur , muni d’une structure de Drinfeld de niveau . On choisit des idéaux principaux premiers de de manière compatible, et on considère le corps obtenu en localisant en et en passant au corps des fractions de la complétion. En prenant le compositum de et de la complétion d’une certaine extension non-ramifiée de , on obtient la tour de corps pour laquelle on démontre qu’elle est ’strictly deeply ramified’ au sens de Scholl. Quand , on étudie la question de savoir s’il s’agit d’une tour kummérienne.
Revised:
Accepted:
Published online:
Keywords: formal groups, Lubin–Tate deformation space, strictly deeply ramified tower, field of norms
@article{JTNB_2021__33_2_433_0, author = {Annie Carter and Matthias Strauch}, title = {Lubin{\textendash}Tate {Deformation} {Spaces} and {Fields} of {Norms}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {433--458}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {2}, year = {2021}, doi = {10.5802/jtnb.1166}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1166/} }
TY - JOUR AU - Annie Carter AU - Matthias Strauch TI - Lubin–Tate Deformation Spaces and Fields of Norms JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 433 EP - 458 VL - 33 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1166/ DO - 10.5802/jtnb.1166 LA - en ID - JTNB_2021__33_2_433_0 ER -
%0 Journal Article %A Annie Carter %A Matthias Strauch %T Lubin–Tate Deformation Spaces and Fields of Norms %J Journal de théorie des nombres de Bordeaux %D 2021 %P 433-458 %V 33 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1166/ %R 10.5802/jtnb.1166 %G en %F JTNB_2021__33_2_433_0
Annie Carter; Matthias Strauch. Lubin–Tate Deformation Spaces and Fields of Norms. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 2, pp. 433-458. doi : 10.5802/jtnb.1166. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1166/
[1] Introduction to commutative algebra, Addison-Wesley Publishing Group, 1969, ix+128 pages | MR | Zbl
[2] Elements of mathematics. Commutative algebra, Actualités Scientifiques et Industrielles, Hermann; Addison-Wesley Publishing Group, 1972, xxiv+625 pages (Translated from the French) | MR | Zbl
[3] Elliptic modules, Math. USSR, Sb., Volume 23 (1976) no. 4, pp. 561-592 | DOI | MR
[4] Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 11, Springer, 2008, xxiv+792 pages (Revised by Jarden) | MR | Zbl
[5] The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, 151, Princeton University Press, 2001, viii+276 pages (With an appendix by Vladimir G. Berkovich) | MR | Zbl
[6] Admissible -modules and -adic unitary representations, Math. Z., Volume 270 (2012) no. 3-4, pp. 839-869 | DOI | MR | Zbl
[7] Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. Fr., Volume 94 (1966), pp. 49-59 | DOI | Numdam | MR | Zbl
[8] Higher fields of norms and -modules, Doc. Math., Volume Extra Vol. (2006), pp. 685-709 | MR
[9] On the -adic cohomology of the Lubin–Tate tower, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018) no. 4, pp. 811-863 (With an appendix by Michael Rapoport) | DOI | MR | Zbl
[10] Local class field theory, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, 1967, pp. 128-161 | MR
[11] Local fields, Graduate Texts in Mathematics, 67, Springer, 1979, viii+241 pages (Translated from the French by Marvin Jay Greenberg) | MR | Zbl
[12] Deformation spaces of one-dimensional formal modules and their cohomology, Adv. Math., Volume 217 (2008) no. 3, pp. 889-951 | DOI | MR | Zbl
[13] Geometrically connected components of Lubin–Tate deformation spaces with level structures, Pure Appl. Math. Q., Volume 4 (2008) no. 4, Special Issue: In honor of Jean-Pierre Serre. Part 1, pp. 1215-1232 | DOI | MR | Zbl
[14] Galois actions on torsion points of one-dimensional formal modules, J. Number Theory, Volume 130 (2010) no. 3, pp. 528-533 | DOI | MR | Zbl
[15] An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1994, xiv+450 pages | DOI | MR | Zbl
Cited by Sources: