We generalize Jacobi’s derivative formula for odd by writing an determinant of higher order derivatives at 0 of theta functions in 1 variable with characteristic vectors with entries in as an explicit constant times a power of Dedekind’s -function. We do so by deriving it from an algebraic geometric version that holds in characteristic not dividing .
Nous généralisons la formule de la dérivée de Jacobi en écrivant, pour un impair, un déterminant de taille composé de dérivées d’ordre supérieur évaluées en des fonctions thêta d’une variable avec vecteurs caractéristiques à coordonnées dans comme une constante explicite multipliée par une puissance de la fonction de Dedekind. Nous déduisons ce résultat de sa version algébro-géométrique, qui est valable si la caractéristique ne divise pas .
Revised:
Accepted:
Published online:
Keywords: Theta functions, elliptic curves
@article{JTNB_2021__33_2_361_0, author = {David Grant}, title = {A higher-order generalization of {Jacobi{\textquoteright}s} derivative formula and its algebraic geometric analogue}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {361--386}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {2}, year = {2021}, doi = {10.5802/jtnb.1164}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1164/} }
TY - JOUR AU - David Grant TI - A higher-order generalization of Jacobi’s derivative formula and its algebraic geometric analogue JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 361 EP - 386 VL - 33 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1164/ DO - 10.5802/jtnb.1164 LA - en ID - JTNB_2021__33_2_361_0 ER -
%0 Journal Article %A David Grant %T A higher-order generalization of Jacobi’s derivative formula and its algebraic geometric analogue %J Journal de théorie des nombres de Bordeaux %D 2021 %P 361-386 %V 33 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1164/ %R 10.5802/jtnb.1164 %G en %F JTNB_2021__33_2_361_0
David Grant. A higher-order generalization of Jacobi’s derivative formula and its algebraic geometric analogue. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 2, pp. 361-386. doi : 10.5802/jtnb.1164. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1164/
[1] Lacunary Wronskians on genus one curves, J. Number Theory, Volume 115 (2005) no. 2, pp. 197-214 | DOI | MR | Zbl
[2] Points -entiers sur les courbes elliptiques, J. Number Theory, Volume 38 (1991) no. 3, pp. 323-337 | DOI | MR | Zbl
[3] Points -entiers des courbes elliptiques, Manuscr. Math., Volume 76 (1992) no. 3-4, pp. 305-324 | DOI | MR | Zbl
[4] Algebraic theta functions and the -adic interpolation of Eisenstein-Kronecker numbers, Duke Math. J., Volume 153 (2010) no. 2, pp. 229-295 | MR | Zbl
[5] Theta functions and singular torsion on elliptic curves, Number theory for the millennium I, A K Peters, 2002, pp. 111-126 | Zbl
[6] Singular torsion on elliptic curves, Math. Res. Lett., Volume 10 (2003) no. 5-6, pp. 847-866 | DOI | MR | Zbl
[7] Elliptic Curve Handbook (unpublished)
[8] Theta constants, Riemann surfaces and the modular group. An introduction with applications to uniformization theorems, partition identities and combinatorial number theory, Graduate Studies in Mathematics, 37, American Mathematical Society, 2001 | Zbl
[9] Resultants of Division Polynomials. I: Reciprocity and Elliptic Units (in preparation)
[10] Resultants of Division Polynomials. II: Singular torsion on Elliptic Curves (in preparation)
[11] Some product formulas for theta functions in one and two variables, Acta Arith., Volume 102 (2002) no. 3, pp. 223-238 | DOI | MR | Zbl
[12] A generalization of Jacobi’s derivative formula to dimension two. II, Acta Arith., Volume 190 (2019) no. 4, pp. 403-420 | DOI | MR | Zbl
[13] Two generalizations of Jacobi’s derivative formula, Math. Res. Lett., Volume 12 (2005) no. 5-6, pp. 921-932 | DOI | MR | Zbl
[14] Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | Zbl
[15] Polynômes de Cassels et et résultant (https://webusers.imj-prg.fr/~marc.hindry/cassels.pdf)
[16] On Jacobi’s derivative formula and its generalizations, Am. J. Math., Volume 102 (1980) no. 2, pp. 409-446 | DOI | MR | Zbl
[17] Elementary Number Theory, American Mathematical Society, 1999 | Zbl
[18] Elliptic Functions, Graduate Texts in Mathematics, 112, Springer, 1987 | MR | Zbl
[19] The -adic sigma function, Duke Math. J., Volume 62 (1991) no. 3, pp. 663-688 | MR | Zbl
[20] Number theoretic properties of wronskians of Andrews-Gordon series, Int. J. Number Theory, Volume 4 (2008) no. 2, pp. 323-337 | DOI | MR | Zbl
[21] On the equations defining abelian varieties I, Invent. Math., Volume 1 (1966), pp. 287-354 | DOI | MR | Zbl
[22] The Tata Lectures on Theta. I: Introduction and motivation: Theta functions in one variable. Basic results on theta functions in several variables, Progress in Mathematics, 28, Birkhäuser, 1983 | Zbl
[23] The Tata Lectures on Theta. III, Progress in Mathematics, 97, Birkhäuser, 1991 | MR | Zbl
[24] Über die Gaußschen Summen, Gött. Nachr., Volume 1921 (1921), pp. 147-153 | Zbl
[25] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1971), pp. 259-331 | DOI | Zbl
[26] Algebraic Groups and Class Fields, Graduate Texts in Mathematics, 117, Springer, 1988 | MR | Zbl
[27] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2000 | Zbl
[28] Elliptische Functionen und Algebraische Zahlen, Vieweg u. Sohn., 1891 | Zbl
[29] A direct evaluation of the periods of the Weierstrass zeta function, Ann. Univ. Ferrara, Sez. VII, Sci. Mat., Volume 60 (2014), pp. 495-505 | DOI | MR | Zbl
Cited by Sources: