Nous généralisons la formule de la dérivée de Jacobi en écrivant, pour un
We generalize Jacobi’s derivative formula for odd
Révisé le :
Accepté le :
Publié le :
Mots-clés : Theta functions, elliptic curves
David Grant 1

@article{JTNB_2021__33_2_361_0, author = {David Grant}, title = {A higher-order generalization of {Jacobi{\textquoteright}s} derivative formula and its algebraic geometric analogue}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {361--386}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {2}, year = {2021}, doi = {10.5802/jtnb.1164}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1164/} }
TY - JOUR AU - David Grant TI - A higher-order generalization of Jacobi’s derivative formula and its algebraic geometric analogue JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 361 EP - 386 VL - 33 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1164/ DO - 10.5802/jtnb.1164 LA - en ID - JTNB_2021__33_2_361_0 ER -
%0 Journal Article %A David Grant %T A higher-order generalization of Jacobi’s derivative formula and its algebraic geometric analogue %J Journal de théorie des nombres de Bordeaux %D 2021 %P 361-386 %V 33 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1164/ %R 10.5802/jtnb.1164 %G en %F JTNB_2021__33_2_361_0
David Grant. A higher-order generalization of Jacobi’s derivative formula and its algebraic geometric analogue. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 2, pp. 361-386. doi : 10.5802/jtnb.1164. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1164/
[1] Lacunary Wronskians on genus one curves, J. Number Theory, Volume 115 (2005) no. 2, pp. 197-214 | DOI | MR | Zbl
[2] Points
[3] Points
[4] Algebraic theta functions and the
[5] Theta functions and singular torsion on elliptic curves, Number theory for the millennium I, A K Peters, 2002, pp. 111-126 | Zbl
[6] Singular torsion on elliptic curves, Math. Res. Lett., Volume 10 (2003) no. 5-6, pp. 847-866 | DOI | MR | Zbl
[7] Elliptic Curve Handbook (unpublished)
[8] Theta constants, Riemann surfaces and the modular group. An introduction with applications to uniformization theorems, partition identities and combinatorial number theory, Graduate Studies in Mathematics, 37, American Mathematical Society, 2001 | Zbl
[9] Resultants of Division Polynomials. I: Reciprocity and Elliptic Units (in preparation)
[10] Resultants of Division Polynomials. II: Singular torsion on Elliptic Curves (in preparation)
[11] Some product formulas for theta functions in one and two variables, Acta Arith., Volume 102 (2002) no. 3, pp. 223-238 | DOI | MR | Zbl
[12] A generalization of Jacobi’s derivative formula to dimension two. II, Acta Arith., Volume 190 (2019) no. 4, pp. 403-420 | DOI | MR | Zbl
[13] Two generalizations of Jacobi’s derivative formula, Math. Res. Lett., Volume 12 (2005) no. 5-6, pp. 921-932 | DOI | MR | Zbl
[14] Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | Zbl
[15] Polynômes de Cassels
[16] On Jacobi’s derivative formula and its generalizations, Am. J. Math., Volume 102 (1980) no. 2, pp. 409-446 | DOI | MR | Zbl
[17] Elementary Number Theory, American Mathematical Society, 1999 | Zbl
[18] Elliptic Functions, Graduate Texts in Mathematics, 112, Springer, 1987 | MR | Zbl
[19] The
[20] Number theoretic properties of wronskians of Andrews-Gordon series, Int. J. Number Theory, Volume 4 (2008) no. 2, pp. 323-337 | DOI | MR | Zbl
[21] On the equations defining abelian varieties I, Invent. Math., Volume 1 (1966), pp. 287-354 | DOI | MR | Zbl
[22] The Tata Lectures on Theta. I: Introduction and motivation: Theta functions in one variable. Basic results on theta functions in several variables, Progress in Mathematics, 28, Birkhäuser, 1983 | Zbl
[23] The Tata Lectures on Theta. III, Progress in Mathematics, 97, Birkhäuser, 1991 | MR | Zbl
[24] Über die Gaußschen Summen, Gött. Nachr., Volume 1921 (1921), pp. 147-153 | Zbl
[25] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1971), pp. 259-331 | DOI | Zbl
[26] Algebraic Groups and Class Fields, Graduate Texts in Mathematics, 117, Springer, 1988 | MR | Zbl
[27] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2000 | Zbl
[28] Elliptische Functionen und Algebraische Zahlen, Vieweg u. Sohn., 1891 | Zbl
[29] A direct evaluation of the periods of the Weierstrass zeta function, Ann. Univ. Ferrara, Sez. VII, Sci. Mat., Volume 60 (2014), pp. 495-505 | DOI | MR | Zbl
Cité par Sources :