An asymptotic formula for the variance of squarefree numbers in arithmetic progressions of given modulus was obtained by Nunes, see [9]. We improve one of the error terms as far as one would expect to be able to go.
Une formule asymptotique pour la variance des nombres entiers sans facteur carré dans une progression arithmétique de raison donnée a été trouvée par Nunes dans [9]. Pour l’un des termes d’erreur, nous donnons la meilleure amélioration que l’on puisse espérer d’avoir.
Revised:
Accepted:
Published online:
Keywords: $k$-free number, variance, arithmetic progression
@article{JTNB_2021__33_2_317_0, author = {Tomos Parry}, title = {A variance for $k$-free numbers in arithmetic progressions of given modulus}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {317--360}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {2}, year = {2021}, doi = {10.5802/jtnb.1163}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1163/} }
TY - JOUR AU - Tomos Parry TI - A variance for $k$-free numbers in arithmetic progressions of given modulus JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 317 EP - 360 VL - 33 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1163/ DO - 10.5802/jtnb.1163 LA - en ID - JTNB_2021__33_2_317_0 ER -
%0 Journal Article %A Tomos Parry %T A variance for $k$-free numbers in arithmetic progressions of given modulus %J Journal de théorie des nombres de Bordeaux %D 2021 %P 317-360 %V 33 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1163/ %R 10.5802/jtnb.1163 %G en %F JTNB_2021__33_2_317_0
Tomos Parry. A variance for $k$-free numbers in arithmetic progressions of given modulus. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 2, pp. 317-360. doi : 10.5802/jtnb.1163. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1163/
[1] The average value of divisor sums in arithmetic progressions, Q. J. Math, Volume 59 (2008) no. 3, pp. 275-286 | DOI | MR | Zbl
[2] Squarefree numbers in arithmetic progressions, Proc. Lond. Math. Soc., Volume 30 (1975), pp. 143-159 | DOI | MR | Zbl
[3] On the variance of squarefree integers in short intervals and arithmetic progressions (2020) (https://arxiv.org/abs/2006.04060) | Zbl
[4] A note on square-free numbers in arithmetic progressions, Bull. Lond. Math. Soc., Volume 7 (1975), pp. 133-138 | DOI | MR | Zbl
[5] On a variance of Hecke eigenvalues in arithmetic progressions, J. Number Theory, Volume 132 (2012) no. 5, pp. 869-887 | MR | Zbl
[6] On the distribution of squarefree integers in arithmetic progressions, Math. Z., Volume 290 (2018) no. 1-2, pp. 421-429 | DOI | MR | Zbl
[7] Topics in Multiplicative Number Theory, Lecture Notes in Mathematics, 227, Springer, 1971 | MR | Zbl
[8] Multiplicative Number Theory I. Classical Theory, Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, 2007 | MR | Zbl
[9] Squarefree numbers in arithmetic progressions, J. Number Theory, Volume 153 (2015), pp. 1-36 | DOI | MR | Zbl
[10] A survey on -freeness, Number theory. Proceedings of the international conference on analytic number theory with special emphasis on L-functions held at the Institute of Mathematical Sciences (Chennai, India, 2002) (Ramanujan Mathematical Society Lecture Notes Series), Volume 1, Ramanujan Mathematical Society, 2005 | MR | Zbl
[11] The Theory of the Riemann Zeta-function, Oxford Science Publications, Clarendon Press, 1986
[12] A variance for -free numbers in arithmetic progressions, Proc. Lond. Math. Soc., Volume 91 (2005) no. 3, pp. 573-597 | DOI | MR | Zbl
Cited by Sources: