Let be an odd prime. What are the possible Newton polygons for a curve in characteristic ? Equivalently, which Newton strata intersect the Torelli locus in ? In this note, we study the Newton polygons of certain curves with -actions. Many of these curves exhibit unlikely intersections between the Torelli locus and the Newton stratification in . Here is one example of particular interest: fix a genus . We show that for any with , there exists a curve of genus whose Newton polygon has slopes . This provides evidence for Oort’s conjecture that the amalgamation of the Newton polygons of two curves is again the Newton polygon of a curve. We also construct families of curves , where is a curve of genus , whose Newton polygons have interesting asymptotic properties. For example, we construct a family of curves whose Newton polygons are asymptotically bounded below by the graph . The proof uses a Newton-over-Hodge result for -covers of curves due to the author, in addition to recent work of Booher–Pries on the realization of this Hodge bound.
Soit un nombre premier impair. Quels sont les polygones de Newton possibles pour les courbes en caractéristique ? Autrement dit, quelles sont les strates de Newton qui s’intersectent avec le lieu de Torelli dans ? Nous étudions les polygones de Newton de certaines courbes équipées d’une action du groupe fini . Plusieurs de ces courbes fournissent des exemples d’intersections improbables entre le lieu de Torelli et la stratification de Newton dans . Voici un exemple qui présente un intérêt particulier : en fixant un genre , nous montrons que pour tout tel que , il existe une courbe de genre telle que les pentes de Newton de sont . Cela confirme une conjecture d’Oort selon laquelle l’amalgamation des polygones de Newton de deux courbes est aussi le polygone de Newton d’une courbe. Nous construisons aussi quelques familles de courbes de genre , dont les polygones asymptotiques de Newton sont intéressants. Par exemple, nous construisons une famille de courbes dont le polygone asymptotique de Newton est minoré par . Les outils principaux de l’article sont un résultat « polygone de Newton est situé au-dessus du polygone de Hodge » pour les courbes équipées d’une action de , dû à l’auteur, et un travail récent de Booher–Pries qui montre que cette borne de Hodge est atteinte.
Revised:
Accepted:
Published online:
Keywords: Newton polygons of curves, Artin–Schreier curves, Torelli locus
@article{JTNB_2021__33_1_237_0, author = {Joe Kramer-Miller}, title = {Some unlikely intersections between the {Torelli} locus and {Newton} strata in $\protect \mathcal{A}_g$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {237--250}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {1}, year = {2021}, doi = {10.5802/jtnb.1159}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1159/} }
TY - JOUR AU - Joe Kramer-Miller TI - Some unlikely intersections between the Torelli locus and Newton strata in $\protect \mathcal{A}_g$ JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 237 EP - 250 VL - 33 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1159/ DO - 10.5802/jtnb.1159 LA - en ID - JTNB_2021__33_1_237_0 ER -
%0 Journal Article %A Joe Kramer-Miller %T Some unlikely intersections between the Torelli locus and Newton strata in $\protect \mathcal{A}_g$ %J Journal de théorie des nombres de Bordeaux %D 2021 %P 237-250 %V 33 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1159/ %R 10.5802/jtnb.1159 %G en %F JTNB_2021__33_1_237_0
Joe Kramer-Miller. Some unlikely intersections between the Torelli locus and Newton strata in $\protect \mathcal{A}_g$. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 1, pp. 237-250. doi : 10.5802/jtnb.1159. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1159/
[1] Generic Newton polygons for curves of given -rank, Algebraic curves and finite fields (Radon Series on Computational and Applied Mathematics), Volume 16, Walter de Gruyter, 2014, pp. 1-21 | MR | Zbl
[2] Newton stratification for polynomials: the open stratum, J. Number Theory, Volume 123 (2007) no. 2, pp. 456-472 | DOI | MR | Zbl
[3] Realizing Artin–Schreier covers of curves with minimal Newton polygons in positive characteristic, J. Number Theory, Volume 214 (2020), pp. 240-250 | DOI | MR | Zbl
[4] The -rank of ramified covers of curves, Compos. Math., Volume 126 (2001) no. 3, pp. 295-322 | DOI | MR | Zbl
[5] Problems from the workshop on Automorphisms of Curves (Leiden, August, 2004), Rend. Semin. Mat. Univ. Padova, Volume 113 (2005), pp. 129-177 | Numdam | MR | Zbl
[6] Etale -covers in characteristic , Compos. Math., Volume 52 (1984) no. 1, pp. 31-45 | Numdam | MR | Zbl
[7] Singularités irrégulières. Correspondance et documents, Documents Mathématiques, 5, Société Mathématique de France, 2007, xii+188 pages | MR | Zbl
[8] On the existence of supersingular curves of given genus, J. Reine Angew. Math., Volume 458 (1995), pp. 53-61 | MR | Zbl
[9] Slope filtration of -crystals, Groupes formels, représentations galoisiennes et cohomologie des variétés de caractéristique positive. I (Astérisque), Volume 63, Société Mathématique de France, 1979, pp. 113-164 | MR | Zbl
[10] -adic estimates of exponential sums on curves (to appear in Algebra Number Theory) | MR | Zbl
[11] Newton polygon stratification of the Torelli locus in PEL-type Shimura varieties (2018) (https://arxiv.org/abs/1811.00604)
[12] Newton polygons arising from special families of cyclic covers of the projective line, Res. Number Theory, Volume 5 (2019) no. 1, 12, 31 pages | DOI | MR | Zbl
[13] The -functions of Witt coverings, Math. Z., Volume 255 (2007) no. 1, pp. 95-115 | DOI | MR | Zbl
[14] Newton polygon strata in the moduli space of abelian varieties, Moduli of abelian varieties (Texel Island, 1999) (Progress in Mathematics), Volume 195, Birkhäuser, 2001, pp. 417-440 | DOI | MR | Zbl
[15] Current results on Newton polygons of curves, Open problems in arithmetic algebraic geometry (Advanced Lectures in Mathematics (ALM)), Volume 46, International Press, 2019, pp. 179-207 | MR | Zbl
[16] Index of -adic differential operators. III. Application to twisted exponential sums, Cohomologie -adique (Astérisque), Volume 119-120, Société Mathématique de France, 1984, pp. 191-266 | Numdam | MR | Zbl
[17] -adic variation of functions of one variable exponential sums. I, Am. J. Math., Volume 125 (2003) no. 3, pp. 669-690 | DOI | MR | Zbl
Cited by Sources: