We prove a result describing the structure of a specific subgroup of the -torsion of the Jacobian of a general superelliptic curve , generalizing the structure theorem for the -torsion of a hyperelliptic curve. We study existence of torsion on curves of the form over finite fields of characteristic . We apply those results to bound from below the Mordell–Weil ranks of Jacobians of certain superelliptic curves over .
Nous démontrons un résultat décrivant la structure d’un sous- groupe de -torsion spécifique de la jacobienne d’une courbe superelliptique générale de la forme , généralisant ainsi le théorème de structure pour la -torsion d’une courbe hyperelliptique. Nous étudions l’existence de points de torsion sur les courbes de la forme sur les corps finis de caractéristique . Nous appliquons ces résultats à la minoration du rank de Mordell–Weil des jacobiennes de certaines courbes superelliptiques sur .
Revised:
Accepted:
Published online:
Keywords: Jacobian variety, superelliptic curves, Mordell–Weil group
@article{JTNB_2021__33_1_223_0, author = {Wojciech Wawr\'ow}, title = {On torsion of superelliptic {Jacobians}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {223--235}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {1}, year = {2021}, doi = {10.5802/jtnb.1158}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1158/} }
TY - JOUR AU - Wojciech Wawrów TI - On torsion of superelliptic Jacobians JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 223 EP - 235 VL - 33 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1158/ DO - 10.5802/jtnb.1158 LA - en ID - JTNB_2021__33_1_223_0 ER -
%0 Journal Article %A Wojciech Wawrów %T On torsion of superelliptic Jacobians %J Journal de théorie des nombres de Bordeaux %D 2021 %P 223-235 %V 33 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1158/ %R 10.5802/jtnb.1158 %G en %F JTNB_2021__33_1_223_0
Wojciech Wawrów. On torsion of superelliptic Jacobians. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 1, pp. 223-235. doi : 10.5802/jtnb.1158. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1158/
[1] Effective Chabauty, Duke Math. J., Volume 52 (1985) no. 3, pp. 765-770 | DOI | MR | Zbl
[2] Arithmetic geometry (Gary Cornell; Joseph H. Silverman, eds.), Springer, 1986, xvi+353 pages (Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30–August 10, 1984) | DOI | MR | Zbl
[3] in , etc., 2006 (NMBRTHRY mailing list)
[4] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | MR | Zbl
[5] Diophantine geometry, An introduction, Graduate Texts in Mathematics, 201, Springer, 2000, xiv+558 pages | DOI | MR | Zbl
[6] A classical introduction to modern number theory, Graduate Texts in Mathematics, 84, Springer, 1990, xiv+389 pages | DOI | MR | Zbl
[7] On the torsion of the Jacobians of superelliptic curves , J. Number Theory, Volume 145 (2014), pp. 402-425 | DOI | MR | Zbl
[8] On the Coleman-Chabauty bound, C. R. Math. Acad. Sci. Paris, Volume 329 (1999) no. 6, pp. 459-463 | DOI | MR | Zbl
[9] The Elkies curve has rank 28 subject only to GRH, Math. Comp., Volume 88 (2019) no. 316, pp. 837-846 | DOI | MR | Zbl
[10] Courbes elliptiques de rang sur , C. R. Math. Acad. Sci. Paris, Volume 313 (1991) no. 3, pp. 139-142 | MR | Zbl
[11] Propriétés arithmétiques de certaines familles de courbes algébriques, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III (1956), pp. 481-488 | MR | Zbl
[12] A heuristic for boundedness of ranks of elliptic curves, J. Eur. Math. Soc., Volume 21 (2019) no. 9, pp. 2859-2903 | DOI | MR | Zbl
[13] Lectures on rational points on curves, 2006 (available at https://math.mit.edu/~poonen/papers/curves.pdf)
[14] Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math., Volume 488 (1997), pp. 141-188 | MR | Zbl
[15] Lie algebras and Lie groups, Lecture Notes in Mathematics, 1500, Springer, 2006, viii+168 pages 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition | MR
[16] Genus two curves over with high rank, Comment. Math. Univ. St. Pauli, Volume 46 (1997) no. 1, pp. 15-21 | MR | Zbl
[17] Algebraic function fields and codes, Graduate Texts in Mathematics, 254, Springer, 2009, xiv+355 pages | MR | Zbl
[18] The rank of elliptic curves, Dokl. Akad. Nauk SSSR, Volume 175 (1967), pp. 770-773 | MR
[19] Elliptic curves with large rank over function fields, Ann. Math., Volume 155 (2002) no. 1, pp. 295-315 | DOI | MR | Zbl
[20] -functions with large analytic rank and abelian varieties with large algebraic rank over function fields, Invent. Math., Volume 167 (2007) no. 2, pp. 379-408 | DOI | MR | Zbl
[21] Elliptic curves over function fields, Arithmetic of -functions (IAS/Park City Mathematics Series), Volume 18, American Mathematical Society, 2011, pp. 211-280 | DOI | MR | Zbl
[22] Curves and Jacobians over function fields, Arithmetic geometry over global function fields (Advanced Courses in Mathematics - CRM Barcelona), Springer, 2014, pp. 283-337 | MR | Zbl
Cited by Sources: