On torsion of superelliptic Jacobians
Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 1, pp. 223-235.

We prove a result describing the structure of a specific subgroup of the m-torsion of the Jacobian of a general superelliptic curve y m =F(x), generalizing the structure theorem for the 2-torsion of a hyperelliptic curve. We study existence of torsion on curves of the form y q =x p -x+a over finite fields of characteristic p. We apply those results to bound from below the Mordell–Weil ranks of Jacobians of certain superelliptic curves over .

Nous démontrons un résultat décrivant la structure d’un sous- groupe de m-torsion spécifique de la jacobienne d’une courbe superelliptique générale de la forme y m =F(x), généralisant ainsi le théorème de structure pour la 2-torsion d’une courbe hyperelliptique. Nous étudions l’existence de points de torsion sur les courbes de la forme y q =x p -x+a sur les corps finis de caractéristique p. Nous appliquons ces résultats à la minoration du rank de Mordell–Weil des jacobiennes de certaines courbes superelliptiques sur .

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1158
Classification: 14H40, 14G10, 14H45
Keywords: Jacobian variety, superelliptic curves, Mordell–Weil group
Wojciech Wawrów 1

1 Adam Mickiewicz University Faculty of Mathematics and Computer Science Uniwersytetu Poznańskiego 4 61-614 Poznań, Poland
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JTNB_2021__33_1_223_0,
     author = {Wojciech Wawr\'ow},
     title = {On torsion of superelliptic {Jacobians}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {223--235},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {33},
     number = {1},
     year = {2021},
     doi = {10.5802/jtnb.1158},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1158/}
}
TY  - JOUR
AU  - Wojciech Wawrów
TI  - On torsion of superelliptic Jacobians
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2021
SP  - 223
EP  - 235
VL  - 33
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1158/
DO  - 10.5802/jtnb.1158
LA  - en
ID  - JTNB_2021__33_1_223_0
ER  - 
%0 Journal Article
%A Wojciech Wawrów
%T On torsion of superelliptic Jacobians
%J Journal de théorie des nombres de Bordeaux
%D 2021
%P 223-235
%V 33
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1158/
%R 10.5802/jtnb.1158
%G en
%F JTNB_2021__33_1_223_0
Wojciech Wawrów. On torsion of superelliptic Jacobians. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 1, pp. 223-235. doi : 10.5802/jtnb.1158. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1158/

[1] Robert F. Coleman Effective Chabauty, Duke Math. J., Volume 52 (1985) no. 3, pp. 765-770 | DOI | MR | Zbl

[2] Arithmetic geometry (Gary Cornell; Joseph H. Silverman, eds.), Springer, 1986, xvi+353 pages (Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30–August 10, 1984) | DOI | MR | Zbl

[3] Noam D. Elkies 28 in E(), etc., 2006 (NMBRTHRY mailing list)

[4] Robin Hartshorne Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | MR | Zbl

[5] Marc Hindry; Joseph H. Silverman Diophantine geometry, An introduction, Graduate Texts in Mathematics, 201, Springer, 2000, xiv+558 pages | DOI | MR | Zbl

[6] Kenneth Ireland; Michael Rosen A classical introduction to modern number theory, Graduate Texts in Mathematics, 84, Springer, 1990, xiv+389 pages | DOI | MR | Zbl

[7] Tomasz Jędrzejak On the torsion of the Jacobians of superelliptic curves y q =x p +a, J. Number Theory, Volume 145 (2014), pp. 402-425 | DOI | MR | Zbl

[8] Kirti Joshi; Pavlos Tzermias On the Coleman-Chabauty bound, C. R. Math. Acad. Sci. Paris, Volume 329 (1999) no. 6, pp. 459-463 | DOI | MR | Zbl

[9] Zev Klagsbrun; Travis Sherman; James Weigandt The Elkies curve has rank 28 subject only to GRH, Math. Comp., Volume 88 (2019) no. 316, pp. 837-846 | DOI | MR | Zbl

[10] Jean-François Mestre Courbes elliptiques de rang 11 sur Q(t), C. R. Math. Acad. Sci. Paris, Volume 313 (1991) no. 3, pp. 139-142 | MR | Zbl

[11] André Néron Propriétés arithmétiques de certaines familles de courbes algébriques, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III (1956), pp. 481-488 | MR | Zbl

[12] Jennifer Park; Bjorn Poonen; John Voight; Melanie Matchett Wood A heuristic for boundedness of ranks of elliptic curves, J. Eur. Math. Soc., Volume 21 (2019) no. 9, pp. 2859-2903 | DOI | MR | Zbl

[13] Bjorn Poonen Lectures on rational points on curves, 2006 (available at https://math.mit.edu/~poonen/papers/curves.pdf)

[14] Bjorn Poonen; Edward F. Schaefer Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math., Volume 488 (1997), pp. 141-188 | MR | Zbl

[15] Jean-Pierre Serre Lie algebras and Lie groups, Lecture Notes in Mathematics, 1500, Springer, 2006, viii+168 pages 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition | MR

[16] Tetsuji Shioda Genus two curves over Q(t) with high rank, Comment. Math. Univ. St. Pauli, Volume 46 (1997) no. 1, pp. 15-21 | MR | Zbl

[17] Henning Stichtenoth Algebraic function fields and codes, Graduate Texts in Mathematics, 254, Springer, 2009, xiv+355 pages | MR | Zbl

[18] D. T. Tèĭt; Igor R. Šafarevič The rank of elliptic curves, Dokl. Akad. Nauk SSSR, Volume 175 (1967), pp. 770-773 | MR

[19] Douglas Ulmer Elliptic curves with large rank over function fields, Ann. Math., Volume 155 (2002) no. 1, pp. 295-315 | DOI | MR | Zbl

[20] Douglas Ulmer L-functions with large analytic rank and abelian varieties with large algebraic rank over function fields, Invent. Math., Volume 167 (2007) no. 2, pp. 379-408 | DOI | MR | Zbl

[21] Douglas Ulmer Elliptic curves over function fields, Arithmetic of L-functions (IAS/Park City Mathematics Series), Volume 18, American Mathematical Society, 2011, pp. 211-280 | DOI | MR | Zbl

[22] Douglas Ulmer Curves and Jacobians over function fields, Arithmetic geometry over global function fields (Advanced Courses in Mathematics - CRM Barcelona), Springer, 2014, pp. 283-337 | MR | Zbl

Cited by Sources: