Let be an integer such that and . We construct strictly compatible systems of representations of that are potentially automorphic and motivic. As an application, we prove instances of the inverse Galois problem for the –points of the spin groups. For odd , we compare our examples with the work of A. Kret and S. W. Shin ([18]), which studies automorphic Galois representations valued in .
Soit un entier tel que et . Nous construisons des systèmes strictement compatibles de repré- sentations -adiques qui sont potentiellement automorphes et motiviques. Comme application, dans certains cas nous donnons une réponse positive au problème de Galois inverse pour les groupes spinoriels sur . Pour impair, nous comparons nos exemples avec le travail de A. Kret et S. W. Shin ([18]), qui étudie les représentations galoisiennes automorphes à valeurs dans .
Accepted:
Published online:
Keywords: Galois representations, spin groups, inverse Galois problem, automorphic representations
@article{JTNB_2021__33_1_197_0, author = {Shiang Tang}, title = {Motivic {Galois} representations valued in {Spin} groups}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {197--221}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {1}, year = {2021}, doi = {10.5802/jtnb.1157}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1157/} }
TY - JOUR AU - Shiang Tang TI - Motivic Galois representations valued in Spin groups JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 197 EP - 221 VL - 33 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1157/ DO - 10.5802/jtnb.1157 LA - en ID - JTNB_2021__33_1_197_0 ER -
%0 Journal Article %A Shiang Tang %T Motivic Galois representations valued in Spin groups %J Journal de théorie des nombres de Bordeaux %D 2021 %P 197-221 %V 33 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1157/ %R 10.5802/jtnb.1157 %G en %F JTNB_2021__33_1_197_0
Shiang Tang. Motivic Galois representations valued in Spin groups. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 1, pp. 197-221. doi : 10.5802/jtnb.1157. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1157/
[1] Lifting of elements of Weyl groups, J. Algebra, Volume 485 (2017), pp. 142-165 | DOI | MR | Zbl
[2] The Endoscopic classification of representations orthogonal and symplectic groups, Colloquium Publications, 61, American Mathematical Society, 2013 | Zbl
[3] Potential automorphy and change of weight, Ann. Math., Volume 179 (2014) no. 2, pp. 501-609 | DOI | MR | Zbl
[4] -valued local deformation rings and global lifts, Algebra Number Theory, Volume 13 (2019) no. 2, pp. 333-378 | DOI | MR | Zbl
[5] Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Mathematical Surveys and Monographs, 67, American Mathematical Society, 2000 | MR
[6] Lie groups and Lie algebras, Chapters 4-6, Springer, 2002 | Zbl
[7] Compatible systems of Galois representations associated to the exceptional group , Forum Math. Sigma, Volume 7 (2019), e4, 29 pages | MR | Zbl
[8] The conjectural connections between automorphic representations and Galois representations, Automorphic forms and Galois representations (Durham, 2011) (London Mathematical Society Lecture Note Series), Volume 414, London Mathematical Society, 2011, pp. 135-187 | Zbl
[9] Even Galois representations and the Fontaine–Mazur conjecture. II, J. Am. Math. Soc., Volume 25 (2012) no. 2, pp. 533-554 | DOI | MR | Zbl
[10] Local–global compatibility and the action of monodromy on nearby cycles, Duke Math. J., Volume 161 (2012) no. 12, pp. 2311-2413 | MR | Zbl
[11] On limit multiplicities of discrete series representations in spaces of automorphic forms, Invent. Math., Volume 83 (1986) no. 2, pp. 265-284 | DOI | MR | Zbl
[12] Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and L-functions. Vol. I (Ann Arbor, 1988) (Perspectives in Mathematics), Volume 10, Academic Press Inc., 1990, pp. 77-159 | Zbl
[13] Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, 900, Springer, 1982 | MR | Zbl
[14] Relative deformation theory and lifting irreducible Galois representations (2019) (https://arxiv.org/abs/1904.02374)
[15] Representation theory: a first course, Graduate Texts in Mathematics, 129, Springer, 2013 | Zbl
[16] Serre’s modularity conjecture (I), Invent. Math., Volume 178 (2009) no. 3, pp. 485-504 | DOI | MR | Zbl
[17] Potentially semi-stable deformation rings, J. Am. Math. Soc., Volume 28 (2008) no. 2, pp. 513-546 | MR | Zbl
[18] Galois representations for general symplectic groups (2016) (https://arxiv.org/abs/1609.04223, to appear in J. Eur. Math. Soc.)
[19] Galois representations for even general special orthogonal groups (2020) (https://arxiv.org/abs/2010.08408)
[20] Maximality of Galois actions for compatible systems, Duke Math. J., Volume 80 (1995) no. 3, pp. 601-630 | MR | Zbl
[21] Determining representations from invariant dimensions, Invent. Math., Volume 102 (1990) no. 1, pp. 377-398 | DOI | MR | Zbl
[22] On –independence of algebraic monodromy groups in compatible systems of representations, Invent. Math., Volume 107 (1992) no. 3, pp. 603-636 | DOI | MR
[23] Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2013 | Zbl
[24] Deformations of Galois representations and exceptional monodromy, Invent. Math., Volume 205 (2016) no. 2, pp. 269-336 | DOI | MR | Zbl
[25] Potential automorphy of –valued Galois representations (2019) (https://arxiv.org/abs/1910.03164)
[26] Deforming Galois representations and the conjectures of Serre and Fontaine–Mazur, Ann. Math., Volume 1566 (2002) no. 1, pp. 115-154 | DOI | MR | Zbl
[27] Subgroups of algebraic groups containing regular unipotent elements, J. Lond. Math. Soc., Volume 55 (1997) no. 2, pp. 370-386 | DOI | MR | Zbl
[28] Propriétés conjecturales des groupes de Galois motiviques et des représentations -adiques, Motives (Seattle, 1991) (Proceedings of Symposia in Pure Mathematics), Volume 55, American Mathematical Society, 1991, pp. 377-400
[29] Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math., Volume 116 (1994) no. 1, pp. 513-530 | DOI | Zbl
[30] Topics in Galois theory, CRC Press, 2016
[31] Galois representations arising from some compact Shimura varieties, Ann. Math., Volume 173 (2011) no. 3, pp. 1645-1741 | DOI | MR | Zbl
[32] Motives with exceptional Galois groups and the inverse Galois problem, Invent. Math., Volume 196 (2014) no. 2, pp. 267-337 | MR | Zbl
[33] The inverse Galois problem for orthogonal groups (2014) (https://arxiv.org/abs/1409.1151)
Cited by Sources: