Let
Soit
Accepté le :
Publié le :
Mots-clés : Galois representations, spin groups, inverse Galois problem, automorphic representations
Shiang Tang 1

@article{JTNB_2021__33_1_197_0, author = {Shiang Tang}, title = {Motivic {Galois} representations valued in {Spin} groups}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {197--221}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {1}, year = {2021}, doi = {10.5802/jtnb.1157}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1157/} }
TY - JOUR AU - Shiang Tang TI - Motivic Galois representations valued in Spin groups JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 197 EP - 221 VL - 33 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1157/ DO - 10.5802/jtnb.1157 LA - en ID - JTNB_2021__33_1_197_0 ER -
%0 Journal Article %A Shiang Tang %T Motivic Galois representations valued in Spin groups %J Journal de théorie des nombres de Bordeaux %D 2021 %P 197-221 %V 33 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1157/ %R 10.5802/jtnb.1157 %G en %F JTNB_2021__33_1_197_0
Shiang Tang. Motivic Galois representations valued in Spin groups. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 1, pp. 197-221. doi : 10.5802/jtnb.1157. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1157/
[1] Lifting of elements of Weyl groups, J. Algebra, Volume 485 (2017), pp. 142-165 | DOI | MR | Zbl
[2] The Endoscopic classification of representations orthogonal and symplectic groups, Colloquium Publications, 61, American Mathematical Society, 2013 | Zbl
[3] Potential automorphy and change of weight, Ann. Math., Volume 179 (2014) no. 2, pp. 501-609 | DOI | MR | Zbl
[4]
[5] Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Mathematical Surveys and Monographs, 67, American Mathematical Society, 2000 | MR
[6] Lie groups and Lie algebras, Chapters 4-6, Springer, 2002 | Zbl
[7] Compatible systems of Galois representations associated to the exceptional group
[8] The conjectural connections between automorphic representations and Galois representations, Automorphic forms and Galois representations (Durham, 2011) (London Mathematical Society Lecture Note Series), Volume 414, London Mathematical Society, 2011, pp. 135-187 | Zbl
[9] Even Galois representations and the Fontaine–Mazur conjecture. II, J. Am. Math. Soc., Volume 25 (2012) no. 2, pp. 533-554 | DOI | MR | Zbl
[10] Local–global compatibility and the action of monodromy on nearby cycles, Duke Math. J., Volume 161 (2012) no. 12, pp. 2311-2413 | MR | Zbl
[11] On limit multiplicities of discrete series representations in spaces of automorphic forms, Invent. Math., Volume 83 (1986) no. 2, pp. 265-284 | DOI | MR | Zbl
[12] Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and L-functions. Vol. I (Ann Arbor, 1988) (Perspectives in Mathematics), Volume 10, Academic Press Inc., 1990, pp. 77-159 | Zbl
[13] Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, 900, Springer, 1982 | MR | Zbl
[14] Relative deformation theory and lifting irreducible Galois representations (2019) (https://arxiv.org/abs/1904.02374)
[15] Representation theory: a first course, Graduate Texts in Mathematics, 129, Springer, 2013 | Zbl
[16] Serre’s modularity conjecture (I), Invent. Math., Volume 178 (2009) no. 3, pp. 485-504 | DOI | MR | Zbl
[17] Potentially semi-stable deformation rings, J. Am. Math. Soc., Volume 28 (2008) no. 2, pp. 513-546 | MR | Zbl
[18] Galois representations for general symplectic groups (2016) (https://arxiv.org/abs/1609.04223, to appear in J. Eur. Math. Soc.)
[19] Galois representations for even general special orthogonal groups (2020) (https://arxiv.org/abs/2010.08408)
[20] Maximality of Galois actions for compatible systems, Duke Math. J., Volume 80 (1995) no. 3, pp. 601-630 | MR | Zbl
[21] Determining representations from invariant dimensions, Invent. Math., Volume 102 (1990) no. 1, pp. 377-398 | DOI | MR | Zbl
[22] On
[23] Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2013 | Zbl
[24] Deformations of Galois representations and exceptional monodromy, Invent. Math., Volume 205 (2016) no. 2, pp. 269-336 | DOI | MR | Zbl
[25] Potential automorphy of
[26] Deforming Galois representations and the conjectures of Serre and Fontaine–Mazur, Ann. Math., Volume 1566 (2002) no. 1, pp. 115-154 | DOI | MR | Zbl
[27] Subgroups of algebraic groups containing regular unipotent elements, J. Lond. Math. Soc., Volume 55 (1997) no. 2, pp. 370-386 | DOI | MR | Zbl
[28] Propriétés conjecturales des groupes de Galois motiviques et des représentations
[29] Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math., Volume 116 (1994) no. 1, pp. 513-530 | DOI | Zbl
[30] Topics in Galois theory, CRC Press, 2016
[31] Galois representations arising from some compact Shimura varieties, Ann. Math., Volume 173 (2011) no. 3, pp. 1645-1741 | DOI | MR | Zbl
[32] Motives with exceptional Galois groups and the inverse Galois problem, Invent. Math., Volume 196 (2014) no. 2, pp. 267-337 | MR | Zbl
[33] The inverse Galois problem for orthogonal groups (2014) (https://arxiv.org/abs/1409.1151)
Cité par Sources :