Let be a global field, let be a Dedekind domain with , and let be a finitely generated field. Using a unified approach for both elliptic curves and Drinfeld modules that are defined over and that have a trivial endomorphism ring, with , in the former case and with a global function field, its ring of functions regular away from a fixed prime in the latter case, we prove, for any nonzero ideal , best possible estimates in the norm for the degree over of the subfield of the -division field of fixed by the scalars.
Soient un corps global, un anneau de Dedekind avec et un corps de type fini. Pour les courbes elliptiques et les modules de Drinfeld définis sur et ayant un anneau d’endomorphismes trivial (où et dans le premier cas et est un corps de fonctions global et son anneau des fonctions régulières en dehors d’un idéal premier fixé dans le second cas), nous nous intéressons au sous-corps engendré par les points de -torsion associé à un idéal non nul et à son sous-corps maximal fixé par les automorphismes scalaires. En utilisant une approche unifiée, nous prouvons les meilleures estimations possibles pour le degré de ce dernier corps sur en termes de la norme
Revised:
Accepted:
Published online:
Keywords: Elliptic curves, Drinfeld modules, division fields, Galois representations
@article{JTNB_2021__33_1_95_0, author = {Alina Carmen Cojocaru and Nathan Jones}, title = {Degree bounds for projective division fields associated to elliptic modules with a trivial endomorphism ring}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {95--106}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {1}, year = {2021}, doi = {10.5802/jtnb.1153}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1153/} }
TY - JOUR AU - Alina Carmen Cojocaru AU - Nathan Jones TI - Degree bounds for projective division fields associated to elliptic modules with a trivial endomorphism ring JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 95 EP - 106 VL - 33 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1153/ DO - 10.5802/jtnb.1153 LA - en ID - JTNB_2021__33_1_95_0 ER -
%0 Journal Article %A Alina Carmen Cojocaru %A Nathan Jones %T Degree bounds for projective division fields associated to elliptic modules with a trivial endomorphism ring %J Journal de théorie des nombres de Bordeaux %D 2021 %P 95-106 %V 33 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1153/ %R 10.5802/jtnb.1153 %G en %F JTNB_2021__33_1_95_0
Alina Carmen Cojocaru; Nathan Jones. Degree bounds for projective division fields associated to elliptic modules with a trivial endomorphism ring. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 1, pp. 95-106. doi : 10.5802/jtnb.1153. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1153/
[1] The decomposition of primes in torsion point fields, Lecture Notes in Mathematics, 1761, Springer, 2001 | MR | Zbl
[2] Torsion bounds for elliptic curves and Drinfeld modules, J. Number Theory, Volume 130 (2010) no. 5, pp. 1241-1250 | DOI | MR | Zbl
[3] Frobenius fields for Drinfeld modules of rank 2, Compos. Math., Volume 144 (2008) no. 4, pp. 827-848 | DOI | MR | Zbl
[4] Frobenius fields for elliptic curves, Am. J. Math., Volume 130 (2008) no. 6, pp. 1535-1560 | DOI | MR | Zbl
[5] Reductions of an elliptic curve and their Tate-Shafarevich groups, Math. Ann., Volume 329 (2004) no. 3, pp. 513-534 | MR | Zbl
[6] The absolute discriminant of the endomorphism ring of most reductions of a non-CM elliptic curve is close to maximal (2020) (https://arxiv.org/abs/2003.01253, to appear in Contemporary Mathematics)
[7] Drinfeld modules, Frobenius endomorphisms, and CM-liftings, Int. Math. Res. Not., Volume 2015 (2015) no. 17, pp. 7787-7825 | DOI | MR | Zbl
[8] The growth of the discriminant of the endomorphism ring of the reduction of a rank 2 generic Drinfeld module (2020) https://arxiv.org/abs/2002.09582, to appear in J. Number Theory (Pisa Conference volume) | Zbl
[9] Primes of the form . Fermat, class field theory and complex multiplication, John Wiley & Sons, 1989 | Zbl
[10] The splitting of primes in division fields of elliptic curves, Exp. Math., Volume 11 (2002) no. 4, pp. 555-565 | DOI | MR | Zbl
[11] Endomorphism rings of reductions of Drinfeld modules, J. Number Theory, Volume 212 (2020), pp. 18-39 | DOI | MR | Zbl
[12] A bound for the conductor of an open subgroup of associated to an elliptic curve, Pac. J. Math., Volume 308 (2020) no. 2, pp. 307-331 | DOI | MR | Zbl
[13] Adelic openness for Drinfeld modules in generic characteristic, J. Number Theory, Volume 129 (2009) no. 4, pp. 882-907 | DOI | MR | Zbl
[14] Galois action on division points of Abelian varieties with real multiplications, Am. J. Math., Volume 98 (1976) no. 3, pp. 751-804 | DOI | MR | Zbl
[15] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972), pp. 259-331 | DOI | Zbl
[16] Lehrbuch der Algebra, Band III, 1908 (reprint AMS Chelsea, New York, 2001)
Cited by Sources: