Soient
Let
Révisé le :
Accepté le :
Publié le :
Mots-clés : Elliptic curves, Drinfeld modules, division fields, Galois representations
Alina Carmen Cojocaru 1, 2 ; Nathan Jones 3

@article{JTNB_2021__33_1_95_0, author = {Alina Carmen Cojocaru and Nathan Jones}, title = {Degree bounds for projective division fields associated to elliptic modules with a trivial endomorphism ring}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {95--106}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {1}, year = {2021}, doi = {10.5802/jtnb.1153}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1153/} }
TY - JOUR AU - Alina Carmen Cojocaru AU - Nathan Jones TI - Degree bounds for projective division fields associated to elliptic modules with a trivial endomorphism ring JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 95 EP - 106 VL - 33 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1153/ DO - 10.5802/jtnb.1153 LA - en ID - JTNB_2021__33_1_95_0 ER -
%0 Journal Article %A Alina Carmen Cojocaru %A Nathan Jones %T Degree bounds for projective division fields associated to elliptic modules with a trivial endomorphism ring %J Journal de théorie des nombres de Bordeaux %D 2021 %P 95-106 %V 33 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1153/ %R 10.5802/jtnb.1153 %G en %F JTNB_2021__33_1_95_0
Alina Carmen Cojocaru; Nathan Jones. Degree bounds for projective division fields associated to elliptic modules with a trivial endomorphism ring. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 1, pp. 95-106. doi : 10.5802/jtnb.1153. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1153/
[1] The decomposition of primes in torsion point fields, Lecture Notes in Mathematics, 1761, Springer, 2001 | MR | Zbl
[2] Torsion bounds for elliptic curves and Drinfeld modules, J. Number Theory, Volume 130 (2010) no. 5, pp. 1241-1250 | DOI | MR | Zbl
[3] Frobenius fields for Drinfeld modules of rank 2, Compos. Math., Volume 144 (2008) no. 4, pp. 827-848 | DOI | MR | Zbl
[4] Frobenius fields for elliptic curves, Am. J. Math., Volume 130 (2008) no. 6, pp. 1535-1560 | DOI | MR | Zbl
[5] Reductions of an elliptic curve and their Tate-Shafarevich groups, Math. Ann., Volume 329 (2004) no. 3, pp. 513-534 | MR | Zbl
[6] The absolute discriminant of the endomorphism ring of most reductions of a non-CM elliptic curve is close to maximal (2020) (https://arxiv.org/abs/2003.01253, to appear in Contemporary Mathematics)
[7] Drinfeld modules, Frobenius endomorphisms, and CM-liftings, Int. Math. Res. Not., Volume 2015 (2015) no. 17, pp. 7787-7825 | DOI | MR | Zbl
[8] The growth of the discriminant of the endomorphism ring of the reduction of a rank 2 generic Drinfeld module (2020) https://arxiv.org/abs/2002.09582, to appear in J. Number Theory (Pisa Conference volume) | Zbl
[9] Primes of the form
[10] The splitting of primes in division fields of elliptic curves, Exp. Math., Volume 11 (2002) no. 4, pp. 555-565 | DOI | MR | Zbl
[11] Endomorphism rings of reductions of Drinfeld modules, J. Number Theory, Volume 212 (2020), pp. 18-39 | DOI | MR | Zbl
[12] A bound for the conductor of an open subgroup of
[13] Adelic openness for Drinfeld modules in generic characteristic, J. Number Theory, Volume 129 (2009) no. 4, pp. 882-907 | DOI | MR | Zbl
[14] Galois action on division points of Abelian varieties with real multiplications, Am. J. Math., Volume 98 (1976) no. 3, pp. 751-804 | DOI | MR | Zbl
[15] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972), pp. 259-331 | DOI | Zbl
[16] Lehrbuch der Algebra, Band III, 1908 (reprint AMS Chelsea, New York, 2001)
- Obstructions to reciprocity laws related to division fields of Drinfeld modules, Proceedings of the American Mathematical Society, Volume 151 (2023) no. 4, pp. 1379-1393 | DOI:10.1090/proc/16157 | Zbl:1521.11040
- The growth of the discriminant of the endomorphism ring of the reduction of a rank 2 generic Drinfeld module, Journal of Number Theory, Volume 237 (2022), pp. 15-39 | DOI:10.1016/j.jnt.2021.03.026 | Zbl:1507.11049
- The absolute discriminant of the endomorphism ring of most reductions of a non-CM elliptic curve is close to maximal, Arithmetic, geometry, cryptography and coding theory, AGC2T, 17th international conference, Centre International de Rencontres Mathématiques, Marseilles, France, June 10–14, 2019, Providence, RI: American Mathematical Society (AMS), 2021, pp. 51-57 | DOI:10.1090/conm/770/15430 | Zbl:1497.11146
Cité par 3 documents. Sources : zbMATH