Let be a prime, let be a discretely valued extension of , and let be an abelian -variety with semistable reduction. Extending work by Kim and Marshall from the case where and is unramified, we prove an complement of a Galois cohomological formula of Grothendieck for the -primary part of the Néron component group of . Our proof involves constructing, for each , a finite flat -group scheme with generic fiber equal to the maximal -crystalline submodule of . As a corollary, we have a new proof of the Coleman–Iovita monodromy criterion for good reduction of abelian -varieties.
Soient un nombre premier, une extension de de valuation discrète, et une -variété abélienne à réduction semistable. En étendant les travaux de Kim et Marshall portant sur le cas et non ramifié, nous prouvons un complément pour à la formule cohomologique de Grothendieck pour la partie -primaire du groupe des composantes connexes du modèle de Néron de . Notre démonstration consiste à construire, pour chaque , un schéma en groupes plat et fini sur dont la fibre générique est isomorphe au sous-module -cristallin maximal de . Comme corollaire, on obtient une nouvelle preuve du critère monodromique de bonne réduction de Coleman–Iovita.
Revised:
Accepted:
Published online:
Keywords: Néron component group, log 1-motive, torsion 1-crystalline representation
Cody Gunton 1
@article{JTNB_2021__33_1_39_0, author = {Cody Gunton}, title = {Semistable abelian varieties and maximal torsion 1-crystalline submodules}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {39--81}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {1}, year = {2021}, doi = {10.5802/jtnb.1151}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1151/} }
TY - JOUR AU - Cody Gunton TI - Semistable abelian varieties and maximal torsion 1-crystalline submodules JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 39 EP - 81 VL - 33 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1151/ DO - 10.5802/jtnb.1151 LA - en ID - JTNB_2021__33_1_39_0 ER -
%0 Journal Article %A Cody Gunton %T Semistable abelian varieties and maximal torsion 1-crystalline submodules %J Journal de théorie des nombres de Bordeaux %D 2021 %P 39-81 %V 33 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1151/ %R 10.5802/jtnb.1151 %G en %F JTNB_2021__33_1_39_0
Cody Gunton. Semistable abelian varieties and maximal torsion 1-crystalline submodules. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 1, pp. 39-81. doi : 10.5802/jtnb.1151. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1151/
[1] Crystalline realizations of 1-motives, Math. Ann., Volume 331 (2005) no. 1, pp. 111-172 | DOI | MR | Zbl
[2] On a theorem of Kisin, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 13-14, pp. 505-506 | DOI | MR | Zbl
[3] Monodromy of logarithmic Barsotti–Tate groups attached to 1-motives, J. Reine Angew. Math., Volume 573 (2004), pp. 211-234 | DOI | MR | Zbl
[4] Théorie de Dieudonné cristalline. II, Lecture Notes in Mathematics, 930, Springer, 1982, x+261 pages | Zbl
[5] Finite flat commutative group schemes over complete discrete valuation fields: classification, structural results; application to reduction of abelian varieties, Mathematisches Institut, Georg-August-Universität Göttingen: Seminars Winter Term 2004/2005, Universitätsdrucke Göttingen, 2005, pp. 99-108 | MR | Zbl
[6] Degenerating abelian varieties, Topology, Volume 30 (1991) no. 4, pp. 653-698 | DOI | MR | Zbl
[7] Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 21, Springer, 1990, x+325 pages | Zbl
[8] Groupes -divisibles, groupes finis et modules filtrés, Ann. Math., Volume 152 (2000) no. 2, pp. 489-549 | DOI | MR | Zbl
[9] Integral -adic Hodge theory, Algebraic geometry 2000, Azumino (Hotaka) (Advanced Studies in Pure Mathematics), Volume 36, Mathematical Society of Japan, 2002, pp. 51-80 | DOI | MR | Zbl
[10] CMI Summer School Notes on -adic Hodge Theory (2009) (available at http://math.stanford.edu/~conrad/papers/notes.pdf)
[11] The Frobenius and monodromy operators for curves and abelian varieties, Duke Math. J., Volume 97 (1999) no. 1, pp. 171-215 | DOI | MR | Zbl
[12] Local invariants of isogenous elliptic curves, Trans. Am. Math. Soc., Volume 367 (2015) no. 6, pp. 4339-4358 | DOI | MR | Zbl
[13] Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 22, Springer, 1990, xii+316 pages (with an appendix by David Mumford) | DOI | MR | Zbl
[14] Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, Journées de Géométrie Algébrique de Rennes. (Rennes, 1978), Vol. III (Astérisque), Volume 65, Société Mathématique de France, 1979, pp. 3-80 | Numdam | MR | Zbl
[15] SGA7, Exposé IX, Lecture Notes in Mathematics, 288, Springer, 1967-1969
[16] Groupes de Barsotti–Tate et cristaux de Dieudonné, Séminaire de Mathématiques Supérieures, 45, Presses de l’Université de Montréal, 1974, 155 pages | MR | Zbl
[17] Continuous étale cohomology, Math. Ann., Volume 280 (1988) no. 2, pp. 207-245 | DOI | MR | Zbl
[18] Logarithmic abelian varieties, Part IV: Proper models, Nagoya Math. J., Volume 219 (2015), pp. 9-63 | DOI | MR | Zbl
[19] Logarithmic Dieudonné Theory (unpublished preprint) | Zbl
[20] Crystalline subrepresentations and Néron models, Math. Res. Lett., Volume 7 (2000) no. 5-6, pp. 605-614 | DOI | MR | Zbl
[21] The classification of -divisible groups over 2-adic discrete valuation rings, Math. Res. Lett., Volume 19 (2012) no. 1, pp. 121-141 | DOI | MR | Zbl
[22] Crystalline representations and -crystals, Algebraic geometry and number theory (Progress in Mathematics), Volume 253, Birkhäuser, 2006, pp. 459-496 | DOI | MR | Zbl
[23] Integral models for Shimura varieties of abelian type, J. Am. Math. Soc., Volume 23 (2010) no. 4, pp. 967-1012 | DOI | MR | Zbl
[24] Arithmetic compactifications of PEL-type Shimuravarieties, London Mathematical Society Monographs, 36, Princeton University Press, 2013, xxvi+561 pages | DOI | MR | Zbl
[25] Rigid Cohomology over Laurent Series Fields, Algebra and Applications, 21, Springer, 2016 | DOI | MR | Zbl
[26] Torsion -adic Galois representations and a conjecture of Fontaine, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 4, pp. 633-674 | Numdam | MR | Zbl
[27] Log p-divisible groups and semi-stable representations (2014) (unpublished preprint)
[28] Crystalline representations and Néron models, Ph. D. Thesis, University of Arizona (USA) (2001) | Zbl
[29] Algebraic groups, Cambridge Studies in Advanced Mathematics, 170, Cambridge University Press, 2017, xvi+644 pages | DOI | MR
[30] An analytic construction of degenerating abelian varieties over complete rings, Compos. Math., Volume 24 (1972), pp. 239-272 | Numdam | MR | Zbl
[31] On Galois equivariance of homomorphisms between torsion crystalline representations, Nagoya Math. J., Volume 229 (2018), pp. 169-214 | DOI | MR | Zbl
[32] Variétés abéliennes et géométrie rigide, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, 1971, pp. 473-477 | Zbl
[33] Schémas en groupes de type , Bull. Soc. Math. Fr., Volume 102 (1974), pp. 241-280 | DOI | Numdam | MR | Zbl
[34] 1-motifs et monodromie géométrique, Périodes -adiques (Bures-sur-Yvette, 1988) (Astérisque), Volume 223, Société Mathématique de France, 1994, pp. 295-319 | Numdam | MR | Zbl
[35] Stacks Project, 2018 (http://stacks.math.columbia.edu)
[36] -divisible groups, Proc. Conf. Local Fields (Driebergen, 1966), Springer, 1967, pp. 158-183 | DOI | MR | Zbl
Cited by Sources: