Rational Equivalences on Products of Elliptic Curves in a Family
Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 3, pp. 923-938.

Given a pair of elliptic curves E1,E2 over a field k, we have a natural map CH1(E1)0CH1(E2)0CH2(E1×E2), and a conjecture due to Bloch and Beilinson predicts that the image of this map is finite when k is a number field. We construct a 2-parameter family of elliptic curves that can be used to produce examples of pairs E1,E2 where this image is finite. The family is constructed to guarantee the existence of a rational curve passing through a specified point in the Kummer surface of E1×E2.

Si E1 et E2 sont deux courbes elliptiques sur un corps k, nous avons une application naturelle CH1(E1)0CH1(E2)0CH2(E1×E2). Quand k est un corps de nombres, une conjecture due à Bloch et Beilinson prédit que l’image de cette application est finie. Nous construisons une famille de courbes elliptiques à deux paramètres qui peut être utilisée pour produire des exemples de couples E1,E2 pour lesquels cette image est finie. La famille est définie pour garantir l’existence d’une courbe rationnelle passant par un point spécifié de la surface de Kummer de E1×E2.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1148
Classification : 14C15, 14J27, 11G05
Mots-clés : Chow Group, Kummer surface, clean, pencil, cubic curve, zero-cycle

Jonathan Love 1

1 Stanford University, Dept. of Mathematics Building 380 Stanford, California, USA 94305
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2020__32_3_923_0,
     author = {Jonathan Love},
     title = {Rational {Equivalences} on {Products} of {Elliptic} {Curves} in a {Family}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {923--938},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {3},
     year = {2020},
     doi = {10.5802/jtnb.1148},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1148/}
}
TY  - JOUR
AU  - Jonathan Love
TI  - Rational Equivalences on Products of Elliptic Curves in a Family
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2020
SP  - 923
EP  - 938
VL  - 32
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1148/
DO  - 10.5802/jtnb.1148
LA  - en
ID  - JTNB_2020__32_3_923_0
ER  - 
%0 Journal Article
%A Jonathan Love
%T Rational Equivalences on Products of Elliptic Curves in a Family
%J Journal de théorie des nombres de Bordeaux
%D 2020
%P 923-938
%V 32
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1148/
%R 10.5802/jtnb.1148
%G en
%F JTNB_2020__32_3_923_0
Jonathan Love. Rational Equivalences on Products of Elliptic Curves in a Family. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 3, pp. 923-938. doi : 10.5802/jtnb.1148. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1148/

[1] Alexander A. Beĭlinson Higher regulators and values of L-functions, Current problems in mathematics, Vol. 24 (Itogi Nauki i Tekhniki), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1984, pp. 181-238 | MR

[2] Alexander A. Beĭlinson Height pairing between algebraic cycles, K-theory, arithmetic and geometry (Moscow, 1984–1986) (Lecture Notes in Mathematics), Volume 1289, Springer, 1987, pp. 1-25 | DOI | MR | Zbl

[3] Spencer Bloch Algebraic cycles and values of L-functions, J. Reine Angew. Math., Volume 350 (1984), pp. 94-108 | DOI | MR | Zbl

[4] Spencer Bloch Lectures on algebraic cycles, New Mathematical Monographs, 16, Cambridge University Press, 2010, xxiv+130 pages | DOI | MR | Zbl

[5] Wieb Bosma; John Cannon; Catherine Playoust The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 Computational algebra and number theory (London, 1993) | DOI | MR | Zbl

[6] Brian Conrad; Keith Conrad; Harald Helfgott Root numbers and ranks in positive characteristic, Adv. Math., Volume 198 (2005) no. 2, pp. 684-731 | DOI | MR | Zbl

[7] John Cremona The elliptic curve database for conductors to 130000, Algorithmic number theory (Lecture Notes in Computer Science), Volume 4076, Springer, 2006, pp. 11-29 | DOI | MR | Zbl

[8] Igor V. Dolgachev Classical algebraic geometry. A modern view, Cambridge University Press, 2012, xii+639 pages | DOI | MR | Zbl

[9] William Fulton Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer, 1998, xiv+470 pages | DOI | MR | Zbl

[10] Jonathan Love Computing Relations in Groups of Zero-cycles and Isogeny Graphs, Ph. D. Thesis, Stanford University (2021) (in preparation; working title)

[11] Loïc Merel Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996) no. 1-3, pp. 437-449 | DOI | MR | Zbl

[12] David Mumford Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ., Volume 9 (1968), pp. 195-204 | DOI | MR

[13] Kartik Prasanna; Vasudevan Srinivas Zero Cycles on a Product of Elliptic Curves (2018) (private correspondence)

[14] Michael Rosen; Joseph H. Silverman On the rank of an elliptic surface, Invent. Math., Volume 133 (1998) no. 1, pp. 43-67 | DOI | MR | Zbl

[15] Matthias Schütt; Tetsuji Shioda Elliptic surfaces, Algebraic geometry in East Asia (Seoul 2008) (Advanced Studies in Pure Mathematics), Volume 60, Mathematical Society of Japan, 2010, pp. 51-160 | DOI | MR | Zbl

[16] Tetsuji Shioda On the Mordell–Weil lattices, Comment. Math. Univ. St. Pauli, Volume 39 (1990) no. 2, pp. 211-240 | MR | Zbl

[17] Tetsuji Shioda Correspondence of elliptic curves and Mordell–Weil lattices of certain elliptic K3’s, Algebraic cycles and motives. Vol. 2 (London Mathematical Society Lecture Note Series), Volume 344, Cambridge University Press, 2007, pp. 319-339 | DOI | MR | Zbl

[18] Joseph H. Silverman Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math., Volume 342 (1983), pp. 197-211 | DOI | MR | Zbl

[19] Joseph H. Silverman Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiv+525 pages | DOI | MR | Zbl

[20] Mark Watkins Rank distribution in a family of cubic twists, Ranks of elliptic curves and random matrix theory (London Mathematical Society Lecture Note Series), Volume 341, Cambridge University Press, 2007, pp. 237-246 | DOI | MR

[21] Don Zagier; Gerhard Kramarz Numerical investigations related to the L-series of certain elliptic curves, J. Indian Math. Soc., New Ser., Volume 52 (1987), pp. 51-69 | MR | Zbl

Cité par Sources :