Dans cet article, nous donnons une preuve adélique de la formule de Chevalley–Gras pour les corps de nombres qui, elle-même, est une généralisation de la formule du nombre de classes ambiges. L’idée est de réduire cette formule au théorème de la norme de Hasse et à des lois de réciprocité globaux. Nous donnons également une preuve adélique de la formule de Chevalley–Gras pour les groupes des classes des diviseurs de degré dans le cas des corps de fonctions, qui étend un résultat de Rosen.
In this article we give an adelic proof of the Chevalley–Gras formula for global fields, which itself is a generalization of the ambiguous class number formula. The idea is to reduce the formula to the Hasse norm theorem and to the local and global reciprocity laws. We also give an adelic proof of the Chevalley–Gras formula for the class group of divisors of degree in the function field case, which extends a result of Rosen.
Révisé le :
Accepté le :
Publié le :
Mots clés : class groups, ambiguous class number formulas, class field theory
@article{JTNB_2020__32_2_525_0, author = {Jianing Li and Chia-Fu Yu}, title = {The {Chevalley{\textendash}Gras} formula over global fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {525--543}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {2}, year = {2020}, doi = {10.5802/jtnb.1133}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1133/} }
TY - JOUR AU - Jianing Li AU - Chia-Fu Yu TI - The Chevalley–Gras formula over global fields JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 525 EP - 543 VL - 32 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1133/ DO - 10.5802/jtnb.1133 LA - en ID - JTNB_2020__32_2_525_0 ER -
%0 Journal Article %A Jianing Li %A Chia-Fu Yu %T The Chevalley–Gras formula over global fields %J Journal de théorie des nombres de Bordeaux %D 2020 %P 525-543 %V 32 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1133/ %R 10.5802/jtnb.1133 %G en %F JTNB_2020__32_2_525_0
Jianing Li; Chia-Fu Yu. The Chevalley–Gras formula over global fields. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 2, pp. 525-543. doi : 10.5802/jtnb.1133. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1133/
[1] Class field theory, AMS Chelsea Publishing, 2009 | Zbl
[2] Class number formula for dihedral extensions, Glasg. Math. J., Volume 62 (2020) no. 2, pp. 323-353 | DOI | MR | Zbl
[3] Sur la théorie du corps de classes dans les corps finis et les corps locaux, Thèses de l’entre-deux-guerres, 155, 1934 (Doctorat d’État) | Numdam
[4] Chevalley’s ambiguous class number formula for an arbitrary torus, Math. Res. Lett., Volume 15 (2008) no. 6, pp. 1149-1165 | DOI | MR | Zbl
[5] Sur les -classes d’idéaux dans les extensions cycliques relatives de degré premier , Ann. Inst. Fourier, Volume 23 (1973) no. 3, pp. 1-48 | DOI | MR | Zbl
[6] Classes généralisées invariantes, J. Math. Soc. Japan, Volume 46 (1994) no. 3, pp. 467-476 | DOI | MR | Zbl
[7] Class field theory. From theory to practice, Springer Monographs in Mathematics, Springer, 2003 | Zbl
[8] Invariant generalized ideal classes–structure theorems for -class groups in -extensions, Proc. Indian Acad. Sci., Math. Sci., Volume 127 (2017) no. 1, pp. 1-34 | DOI | MR | Zbl
[9] Algebraic number theory, Graduate Texts in Mathematics, 110, Springer, 1986 | Zbl
[10] Cyclotomic fields I and II, Graduate Texts in Mathematics, 121, Springer, 1990 | MR | Zbl
[11] The ambiguous class number formula revisited, J. Ramanujan Math. Soc., Volume 28 (2013) no. 4, pp. 415-421 | MR | Zbl
[12] -Class groups of fields in Kummer towers (2019) (https://arxiv.org/abs/1905.04966v2, to appear in Publ. Mat., Barc.)
[13] capitulation, Publ. Math. Besançon, Algèbre Théorie Nombres, Volume 1996–97 (1997), 2, 32 pages | Zbl
[14] Class Field Theory (2013) (v4.02, available at http://www.jmilne.org/math/)
[15] Ambiguous divisor classes in function fields, J. Number Theory, Volume 9 (1977) no. 2, pp. 160-174 | DOI | MR | Zbl
[16] Redei reciprocity, governing fields, and negative Pell (2020) (https://arxiv.org/abs/1806.06250v2)
[17] A remark on Chevalley’s ambiguous class number formulas (2016) (https://arxiv.org/abs/1412.1458v2)
Cité par Sources :