There is a natural conjugation action on the set of endomorphism of
Il existe une action par conjugaison naturelle sur l’ensemble des endomorphismes de
Révisé le :
Accepté le :
Publié le :
Mots-clés : dynamical systems, multiplier invariants, moduli space
Benjamin Hutz 1

@article{JTNB_2020__32_2_439_0, author = {Benjamin Hutz}, title = {Multipliers and invariants of endomorphisms of projective space in dimension greater than 1}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {439--469}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {2}, year = {2020}, doi = {10.5802/jtnb.1129}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1129/} }
TY - JOUR AU - Benjamin Hutz TI - Multipliers and invariants of endomorphisms of projective space in dimension greater than 1 JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 439 EP - 469 VL - 32 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1129/ DO - 10.5802/jtnb.1129 LA - en ID - JTNB_2020__32_2_439_0 ER -
%0 Journal Article %A Benjamin Hutz %T Multipliers and invariants of endomorphisms of projective space in dimension greater than 1 %J Journal de théorie des nombres de Bordeaux %D 2020 %P 439-469 %V 32 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1129/ %R 10.5802/jtnb.1129 %G en %F JTNB_2020__32_2_439_0
Benjamin Hutz. Multipliers and invariants of endomorphisms of projective space in dimension greater than 1. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 2, pp. 439-469. doi : 10.5802/jtnb.1129. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1129/
[1] Index theorems for meromorphic self-maps of the projective space, Frontiers in complex dynamics (Princeton Mathematical Series), Volume 51, Princeton University Press, 2014, pp. 451-462 | DOI | MR | Zbl
[2] Ideals, Varieties, and Algorithms, Undergraduate Texts in Mathematics, Springer, 1991 | Zbl
[3] The moduli space of quadratic rational maps, J. Am. Math. Soc., Volume 20 (2007) no. 2, pp. 321-355 | DOI | MR | Zbl
[4] Invariant theory for wreath product groups, J. Pure Appl. Algebra, Volume 150 (2000) no. 1, pp. 61-84 | DOI | MR | Zbl
[5] Moduli spaces for dynamical systems with portraits (2018) (https://arxiv.org/abs/1812.09936) | Zbl
[6] The moduli space of rational maps and surjectivity of multiplier representation, Comput. Methods Funct. Theory, Volume 7 (2007) no. 2, pp. 345-360 | DOI | MR | Zbl
[7] The real multiplier coordinate space of the quartic polynomials, Nonlinear analysis and convex analysis, Yokohama Publishers, 2007, pp. 61-69 | Zbl
[8] Symmetrization of rational maps: arithmetic properties and families of Lattès maps of Pk (2016) (https://arxiv.org/abs/1603.04887)
[9] Dynamics of split polynomial maps: uniform bounds for periods and applications, Int. Math. Res. Not., Volume 2017 (2017) no. 1, pp. 213-231 | MR | Zbl
[10] Algebraic independence of multipliers of periodic orbits in the space of rational, Mosc. Math. J., Volume 15 (2015) no. 1, pp. 73-87 | DOI | MR | Zbl
[11] Algebraic independence of multipliers of periodic orbits in the space of polynomial maps of one variable, Ergodic Theory Dyn. Syst., Volume 36 (2016) no. 4, pp. 1156-1166 | DOI | MR | Zbl
[12] Un théorème de point fixe pour les enomorphismes de l’espace projectif avec des applications aux feuilletages algébriques, Bull. Braz. Math. Soc. (N.S.), Volume 35 (2004) no. 3, pp. 345-362 | DOI | MR | Zbl
[13] Semicompleteness of homogeneous quadratic vector fields, Ann. Inst. Fourier, Volume 56 (2006) no. 5, pp. 1583-1615 | DOI | Numdam | MR | Zbl
[14] Quadratic differential equations in three variables without multivalued solutions: Part I, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 14 (2018), 122, p. 46 | MR | Zbl
[15] On the multipliers at fixed points of self-maps of the projective plane (2019) (https://arxiv.org/abs/1902.04433) | Zbl
[16] Dynatomic cycles for morphisms of projective varieties, New York J. Math., Volume 16 (2010), pp. 125-159 | MR | Zbl
[17] Multiplier spectra and the moduli space of degree 3 morphisms on
[18] Rigidity and height bounds for certain post-critically finite endomorphisms of projective space, Can. J. Math., Volume 68 (2016) no. 3, pp. 625-654 | DOI | MR | Zbl
[19] The space of morphisms on projective space, Acta Arith., Volume 146 (2011) no. 1, pp. 13-31 | DOI | MR | Zbl
[20] The McMullen map in positive characteristic (2013) (https://arxiv.org/abs/1304.2804)
[21] Moduli spaces for families of rational maps on
[22] Families of rational maps and iterative root-finding algorithms, Ann. Math., Volume 125 (1987), pp. 467-493 | DOI | MR | Zbl
[23] Geometry and dynamics of quadratic rational maps, Exp. Math., Volume 2 (1993) no. 1, pp. 37-83 | DOI | MR | Zbl
[24] Complex Dynamics in One Variable, Annals of Mathematics Studies, 160, Princeton University Press, 2006 | Zbl
[25] Dense resultant of composed polynomials: Mixed-mixed case, J. Symb. Comput., Volume 36 (2003) no. 6, pp. 825-834 | DOI | MR | Zbl
[26] Isotriviality is equivalent to potential good reduction for endomorphisms of
[27] Lattès maps on
[28] The space of rational maps on
[29] The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, 2007 | MR | Zbl
[30] Moduli spaces and arithmetic dynamics, CRM Monograph Series, 30, American Mathematical Society, 2012 | MR | Zbl
[31] The moduli space of polynomial maps and their fixed-point multipliers, Adv. Math., Volume 322 (2017), pp. 132-185 | DOI | MR | Zbl
[32] Complex dynamical systems on projective spaces, Chaotic Dynamical Systems (Advanced Series in Dynamical Systems), Volume 13, World Scientific, 1993, pp. 120-138 | Zbl
[33] Complex dynamics on projective spaces – index formula for fixed points, Dynamical systems and chaos. Vol. 1: Mathematics, engineering and economics, Volume 1, World Scientific, 1995, pp. 252-259 | Zbl
Cité par Sources :