Dans ce texte, on décrit un algorithme calculant, pour une courbe lisse et connexe sur un corps et un faisceau localement constant de groupes abéliens de torsion inversible dans , le premièr groupe de cohomologie étale et le premièr groupe de cohomologie étale à support propre comme ensembles de torseurs.
La complexité arithmétique de cet algorithme est exponentielle en , , et , où est le genre arithmétique de la complétion normale de sur , est le genre arithmétique de la complétion normale de la courbe répresentant le faisceau , et est le degré de sur .
L’algorithme passe par le calcul d’un schéma en groupoïdes classifiant les -torseurs étales avec quelques structures additionnelles rigidifiantes.
In this paper, we describe an algorithm that, for a smooth connected curve over a field , a finite locally constant sheaf on of abelian groups of torsion invertible in , computes the first étale cohomology and the first étale cohomology with proper support as sets of torsors.
The complexity of this algorithm is exponential in , , and , where is the arithmetic genus of the normal completion of , is the arithmetic genus of the normal completion of the smooth curve representing , and is the degree of over .
The computation in this algorithm is done via the computation of a groupoid scheme classifying the -torsors with some extra rigidifying data.
Révisé le :
Accepté le :
Publié le :
Mots clés : Algebraic geometry, Algorithm, Curves, Étale cohomology
@article{JTNB_2020__32_2_311_0, author = {Jinbi Jin}, title = {Computation of \'etale cohomology on curves in single exponential time}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {311--354}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {2}, year = {2020}, doi = {10.5802/jtnb.1124}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1124/} }
TY - JOUR AU - Jinbi Jin TI - Computation of étale cohomology on curves in single exponential time JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 311 EP - 354 VL - 32 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1124/ DO - 10.5802/jtnb.1124 LA - en ID - JTNB_2020__32_2_311_0 ER -
%0 Journal Article %A Jinbi Jin %T Computation of étale cohomology on curves in single exponential time %J Journal de théorie des nombres de Bordeaux %D 2020 %P 311-354 %V 32 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1124/ %R 10.5802/jtnb.1124 %G en %F JTNB_2020__32_2_311_0
Jinbi Jin. Computation of étale cohomology on curves in single exponential time. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 2, pp. 311-354. doi : 10.5802/jtnb.1124. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1124/
[1] On computing the determinant in small parallel time using a small number of processors, Inf. Process. Lett., Volume 18 (1984), pp. 147-150 | DOI | MR | Zbl
[2] Algorithm of polynomial complexity for factoring polynomials and finding the components of varieties in subexponential time, J. Sov. Math., Volume 34 (1986) no. 4, pp. 1838-1882 (Translated from Zap. Nauchn. Sem. S.-Petersburg, 137:124–188, 1984) | DOI | Zbl
[3] Computational aspects of modular forms and Galois representations (Jean-Marc Couveignes; Sebastiaan J. Edixhoven, eds.), Annals of Mathematics Studies, 176, Princeton University Press, 2011 | MR | Zbl
[4] Theorie der algebraischen Funktionen einer Veränderlichen, J. Reine Angew. Math. (1882)
[5] Cohomologie étale, Lecture Notes in Mathematics, 569, Springer, 1977 | Zbl
[6] Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Contemporary Mathematics), Volume 67, American Mathematical Society, 1987, pp. 93-177 | DOI | Zbl
[7] The membership problem for unmixed polynomial ideals is solvable in single exponential time, Discrete Appl. Math., Volume 33 (1991), pp. 73-94 | DOI | MR | Zbl
[8] On arithmetic and the discrete logarithm problem in class groups of curves, 2008 (Habilitation thesis) | Zbl
[9] Un foncteur norme, Bull. Soc. Math. Fr., Volume 126 (1998), pp. 1-49 | DOI | Numdam | MR | Zbl
[10] Étale cohomology theory, Nankai Tracts in Mathematics, 14, World Scientific, 2015 | Zbl
[11] Algebraic geometry I. Schemes. With examples and exercises, Advanced Lectures in Mathematics, Vieweg+Teubner, 2010 | DOI | Zbl
[12] Éléments de Géométrie Algébrique II. Etude globale élémentaire de quelques classes de morphismes, Publ. Math., Inst. Hautes Étud. Sci., Volume 8 (1961), pp. 5-222 | Numdam
[13] Revêtements étales et groupe fondamental (SGA1), Lecture Notes in Mathematics, 224, Springer, 1971
[14] Counting points on hyperelliptic curves in average polynomial time, Ann. Math., Volume 179 (2014) no. 2, pp. 783-803 | DOI | MR | Zbl
[15] Computing Riemann–Roch spaces in algebraic function fields and related topics, J. Symb. Comput., Volume 33 (2002) no. 4, pp. 425-445 | DOI | MR | Zbl
[16] Polynomial-time reductions from multivariate to bi- and univariate integral polynomial factorization, SIAM J. Comput., Volume 14 (1985) no. 2, pp. 469-489 | DOI | MR | Zbl
[17] Counting points on hyperelliptic curves using Monsky–Washnitzer cohomology, J. Ramanujan Math. Soc., Volume 16 (2001) no. 4, pp. 323-338 | MR | Zbl
[18] Asymptotically fast group operations on Jacobians of general curves (2004) (https://arxiv.org/abs/math/0409209v2) | Zbl
[19] Counting points on varieties over finite fields of small characteristic, Algorithmic Number Theory (Mathematical Sciences Research Institute Publications), Volume 44, Cambridge University Press, 2008 | MR
[20] Galois representations arising from p-divisible groups, Ph. D. Thesis, Harvard University (2000)
[21] Calculabilité de la cohomologie étale modulo , Algebra Number Theory, Volume 9 (2015) no. 7, pp. 1647-1739 | DOI | Zbl
[22] Computing Néron–Severi groups and cycle class groups, Compos. Math., Volume 151 (2015) no. 4, pp. 713-734 | DOI | Zbl
[23] Stacks Project, 2014 (http://stacks.math.columbia.edu)
Cité par Sources :