Kontsevich et Manin ont donné une formule pour le nombre de courbes planes rationnelles de degré passant par points en position générale dans . Lorsque les coordonnées de ces points sont des nombres rationnels, l’ensemble de courbes rationnelles correspondant a une structure naturelle de module galoisien. Nous effectuons une étude élémentaire de cette structure et établissons un lien avec les transformations de revêtements de la fibre générique du produit des applications d’evaluation sur l’espace de modules de morphismes.
Nous étudions ensuite le comportement asymptotique du nombre de points rationnels sur les hypersurfaces de petit degré, ce qui nous permet de généraliser nos résultats en remplaçant le plan projectif par une telle hypersurface.
Kontsevich and Manin gave a formula for the number of rational plane curves of degree through points in general position in the plane. When these points have coordinates in the rational numbers, the corresponding set of rational curves has a natural Galois-module structure. We make some extremely preliminary investigations into this Galois module structure, and relate this to the deck transformations of the generic fibre of the product of the evaluation maps on the moduli space of maps.
We then study the asymptotics of the number of rational points on hypersurfaces of low degree, and use this to generalise our results by replacing the projective plane by such a hypersurface.
Révisé le :
Accepté le :
Publié le :
Mots clés : Moduli spaces, Circle method, Rational curves, Hilbert irreducibility theorem
@article{JTNB_2020__32_1_291_0, author = {David Holmes and Nick Rome}, title = {Fields of definition of rational curves of a given degree}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {291--310}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {1}, year = {2020}, doi = {10.5802/jtnb.1123}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1123/} }
TY - JOUR AU - David Holmes AU - Nick Rome TI - Fields of definition of rational curves of a given degree JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 291 EP - 310 VL - 32 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1123/ DO - 10.5802/jtnb.1123 LA - en ID - JTNB_2020__32_1_291_0 ER -
%0 Journal Article %A David Holmes %A Nick Rome %T Fields of definition of rational curves of a given degree %J Journal de théorie des nombres de Bordeaux %D 2020 %P 291-310 %V 32 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1123/ %R 10.5802/jtnb.1123 %G en %F JTNB_2020__32_1_291_0
David Holmes; Nick Rome. Fields of definition of rational curves of a given degree. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 291-310. doi : 10.5802/jtnb.1123. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1123/
[1] Spaces of rational curves on complete intersections, Compos. Math., Volume 149 (2013) no. 6, pp. 1041-1060 | DOI | MR | Zbl
[2] Forms in many variables, Proc. R. Soc. Lond., Ser. A, Volume 265 (1962), pp. 245-263 | Zbl
[3] Sieving rational points on varieties, Trans. Am. Math. Soc., Volume 371 (2019) no. 8, pp. 5757-5785 | DOI | MR | Zbl
[4] Free rational curves on low degree hypersurfaces and the circle method (2018) (https://arxiv.org/abs/1810.06882)
[5] Rational curves on smooth hypersurfaces of low degree, Algebra Number Theory, Volume 11 (2017) no. 7, pp. 1657-1675 | DOI | MR | Zbl
[6] Normal bundles of rational curves on complete intersections, Commun. Contemp. Math., Volume 21 (2019) no. 2, 1850011, 29 pages | MR | Zbl
[7] Higher-dimensional algebraic geometry, Universitext, Springer, 2001 | Zbl
[8] Rational points of bounded height on Fano varieties, Invent. Math., Volume 95 (1989) no. 2, pp. 421-435 | DOI | MR | Zbl
[9] Opera De Cribro, Colloquium Publications, 57, American Mathematical Society, 2010 | MR | Zbl
[10] Galois groups of enumerative problems, Duke Math. J., Volume 46 (1979) no. 4, pp. 685-724 | DOI | MR | Zbl
[11] Rational curves on hypersurfaces of low degree, J. Reine Angew. Math., Volume 571 (2004), pp. 73-106 | MR | Zbl
[12] Gromov–Witten classes, quantum cohomology, and enumerative geometry, Commun. Math. Phys., Volume 164 (1994) no. 3, pp. 525-562 | DOI | MR | Zbl
[13] The large sieve and its applications, Cambridge Tracts in Mathematics, 175, Cambridge University Press, 2008 | MR | Zbl
[14] Enumerative geometry of singular plane curves, Invent. Math., Volume 97 (1989) no. 3, pp. 447-465 | MR | Zbl
[15] Kontsevich spaces of rational curves on Fano hypersurfaces, J. Reine Angew. Math., Volume 748 (2019), pp. 207-225 | DOI | MR | Zbl
[16] Sarnak’s saturation problem for complete intersections, Mathematika, Volume 65 (2019) no. 1, pp. 1-56 | DOI | MR | Zbl
[17] Topics in Galois theory, A K Peters, 2016
[18] On the normal bundles of rational curves on Fano 3-folds, Asian J. Math., Volume 16 (2012) no. 2, pp. 237-270 | DOI | MR | Zbl
[19] Forms over number fields and weak approximation, Compos. Math., Volume 106 (1997) no. 1, pp. 11-29 | DOI | MR | Zbl
[20] Enumeration of -fold tangent hyperplanes to a surface, J. Algebr. Geom., Volume 4 (1995) no. 3, pp. 503-526 | MR | Zbl
[21] Arithmetic lattices with maximal Galois action, LMS J. Comput. Math., Volume 12 (2009), pp. 144-165 | DOI | MR | Zbl
[22] Das asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math., Volume 18 (1967), pp. 411-467 | Zbl
[23] Almindelige Egenskaber ved systemer af plane Kurver, Kjobenhavn. Vidensk. Selsk., Volume IV (1873), pp. 285-393 | Zbl
Cité par Sources :