Le théorème de Freiman affirme que tout ensemble qui satisfait les conditions et peut être couvert par une suite arithmétique de longueur inférieure ou égale à . Un résultat plus général de Green et Ruzsa implique que cette propriété de couverture est valable pour tout ensemble qui satisfait et la condition de densité très forte . Nous présentons une version de ce résultat pour tous les ensembles qui satisfont avec la condition de densité plus faible .
Freiman’s 2.4-Theorem states that any set satisfying and can be covered by an arithmetic progression of length at most . A more general result of Green and Ruzsa implies that this covering property holds for any set satisfying as long as the rather strong density requirement is satisfied. We present a version of this statement that allows for sets satisfying with the more modest density requirement of .
Révisé le :
Accepté le :
Publié le :
Mots clés : Additive Combinatorics, Sumset, Small Doubling, Inverse Result
@article{JTNB_2020__32_1_275_0, author = {Pablo Candela and Oriol Serra and Christoph Spiegel}, title = {A step beyond {Freiman{\textquoteright}s} theorem for set addition modulo a prime}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {275--289}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {1}, year = {2020}, doi = {10.5802/jtnb.1122}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1122/} }
TY - JOUR AU - Pablo Candela AU - Oriol Serra AU - Christoph Spiegel TI - A step beyond Freiman’s theorem for set addition modulo a prime JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 275 EP - 289 VL - 32 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1122/ DO - 10.5802/jtnb.1122 LA - en ID - JTNB_2020__32_1_275_0 ER -
%0 Journal Article %A Pablo Candela %A Oriol Serra %A Christoph Spiegel %T A step beyond Freiman’s theorem for set addition modulo a prime %J Journal de théorie des nombres de Bordeaux %D 2020 %P 275-289 %V 32 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1122/ %R 10.5802/jtnb.1122 %G en %F JTNB_2020__32_1_275_0
Pablo Candela; Oriol Serra; Christoph Spiegel. A step beyond Freiman’s theorem for set addition modulo a prime. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 275-289. doi : 10.5802/jtnb.1122. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1122/
[1] On sets with small sumset in the circle, Q. J. Math, Volume 70 (2018) no. 1, pp. 49-69 | DOI | MR | Zbl
[2] On sets with small sumset and m-sumfree sets in (2019) (https://arxiv.org/abs/1909.07967)
[3] A polynomial bound in Freiman’s theorem, Duke Math. J., Volume 113 (2002) no. 3, pp. 399-419 | DOI | MR | Zbl
[4] A step beyond Kneser’s theorem for abelian finite groups, Proc. Lond. Math. Soc., Volume 86 (2003) no. 1, pp. 1-28 | DOI | MR | Zbl
[5] Inverse problems in additive number theory. Addition of sets of residues modulo a prime, Dokl. Akad. Nauk SSSR, Volume 141 (1961), pp. 571-573 | MR
[6] Foundations of a structural theory of set addition, Translations of Mathematical Monographs, 37, American Mathematical Society, 1973 (translated from Russian) | MR | Zbl
[7] On doubling and volume: chains, Acta Arith., Volume 186 (2018) no. 1, pp. 37-59 | DOI | MR | Zbl
[8] Sets with small sumset and rectification, Bull. Lond. Math. Soc., Volume 38 (2006) no. 1, pp. 43-52 | DOI | MR | Zbl
[9] Freiman’s theorem in an arbitrary abelian group, J. Lond. Math. Soc., Volume 75 (2007) no. 1, pp. 163-175 | DOI | MR | Zbl
[10] Structural additive theory, Developments in Mathematics, 30, Springer, 2013 | MR | Zbl
[11] On the critical pair theory in , Acta Arith., Volume 121 (2006) no. 2, pp. 99-115 | DOI | MR | Zbl
[12] Freiman’s inverse problem with small doubling property, Adv. Math., Volume 216 (2007) no. 2, pp. 711-752 | MR | Zbl
[13] On small sumsets in an abelian group, Acta Math., Volume 103 (1960) no. 1-2, pp. 63-88 | DOI | MR | Zbl
[14] Distribution of points on arcs, Integers, Volume 5 (2005) no. 2, A11, 6 pages | MR | Zbl
[15] On addition of two distinct sets of integers, Acta Arith., Volume 70 (1995) no. 1, pp. 85-91 | MR | Zbl
[16] On Freiman’s 2.4-theorem, Skr., K. Nor. Vidensk. Selsk., Volume 2006 (2006) no. 4, pp. 11-18 | MR | Zbl
[17] Generalized arithmetical progressions and sumsets, Acta Math. Hung., Volume 65 (1994) no. 4, pp. 379-388 | DOI | MR | Zbl
[18] Appendix to “Roth’s theorem on progressions revisited” by J. Bourgain, J. Anal. Math., Volume 104 (2008), pp. 193-206 | DOI | MR | Zbl
[19] Near optimal bounds in Freiman’s theorem, Duke Math. J., Volume 158 (2011) no. 1, pp. 1-12 | DOI | MR | Zbl
[20] Large sets with small doubling modulo are well covered by an arithmetic progression, Ann. Inst. Fourier, Volume 59 (2009) no. 5, pp. 2043-2060 | DOI | MR | Numdam | Zbl
[21] The critical pairs of subsets of a group of prime order, J. Lond. Math. Soc., Volume 31 (1956), pp. 200-205 | DOI | MR | Zbl
Cité par Sources :