On Tate’s conjecture for the elliptic modular surface of level N over a prime field of characteristic 1modN
Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 193-204.

Modulo une hypothèse de semi-simplicité partielle, on démontre le conjecture de Tate pour la surface elliptique modulaire E(N) de niveau N sur un corps premier de cardinalité p1modN et on montre que le rang du groupe de Mordell–Weil est nul dans ce cas. Pour N4 c’est un résultat de Shioda. De plus, on démontre que l’hypothèse de semi-simplicité vaut en dehors d’un ensemble de nombres premiers p de densité nulle.

Assuming partial semisimplicity of Frobenius, we show Tate’s conjecture for the reduction of the elliptic modular surface E(N) of level N at a prime p satisfying p1modN and show that the Mordell–Weil rank is zero in this case. This extends a result of Shioda to N>4. Furthermore, we show that for every number field L partial semisimplicity holds for the reductions of E(N) L at a set of places of density 1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1117
Classification : 11G05, 11F11, 14F30
Mots clés : elliptic curves, modular forms, $p$-adic cohomology, zeta function
Rémi Lodh 1

1 Springer 4 Crinan St. London N1 9XW, UK
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2020__32_1_193_0,
     author = {R\'emi Lodh},
     title = {On {Tate{\textquoteright}s} conjecture for the elliptic modular surface of level $N$ over a prime field of characteristic $1\ \protect \mathrm{mod}\ N$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {193--204},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {1},
     year = {2020},
     doi = {10.5802/jtnb.1117},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1117/}
}
TY  - JOUR
AU  - Rémi Lodh
TI  - On Tate’s conjecture for the elliptic modular surface of level $N$ over a prime field of characteristic $1\ \protect \mathrm{mod}\ N$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2020
SP  - 193
EP  - 204
VL  - 32
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1117/
DO  - 10.5802/jtnb.1117
LA  - en
ID  - JTNB_2020__32_1_193_0
ER  - 
%0 Journal Article
%A Rémi Lodh
%T On Tate’s conjecture for the elliptic modular surface of level $N$ over a prime field of characteristic $1\ \protect \mathrm{mod}\ N$
%J Journal de théorie des nombres de Bordeaux
%D 2020
%P 193-204
%V 32
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1117/
%R 10.5802/jtnb.1117
%G en
%F JTNB_2020__32_1_193_0
Rémi Lodh. On Tate’s conjecture for the elliptic modular surface of level $N$ over a prime field of characteristic $1\ \protect \mathrm{mod}\ N$. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 193-204. doi : 10.5802/jtnb.1117. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1117/

[1] Pierre Berthelot Dualité de Poincaré et formule de Künneth en cohomologie rigide, C. R. Math. Acad. Sci. Paris, Volume 325 (1997) no. 5, pp. 493-498 | DOI | MR | Zbl

[2] Pierre Berthelot Finitude et pureté cohomologique en cohomologie rigide (avec un appendice par Aise Johan de Jong), Invent. Math., Volume 128 (1997), pp. 329-377 | DOI | Zbl

[3] Théorie des intersections et théorème de Riemann–Roch (SGA 6) (Pierre Berthelot; Alexander Grothendieck; Luc Illusie, eds.), Lecture Notes in Mathematics, 225, Springer, 1971 | Zbl

[4] Pierre Colmez; Jean-Marc Fontaine Construction des représentations p-adiques semi-stables, Invent. Math., Volume 140 (2000), pp. 1-43 | DOI | Zbl

[5] Pierre Deligne Formes modulaires et représentations l-adiques, Séminaire Bourbaki 1968/69 (Lecture Notes in Mathematics), Volume 179 (1971) | DOI | Zbl

[6] Pierre Deligne; Michael Rapoport Les schémas de modules de courbes elliptiques, Modular functions of one variable II (Lecture Notes in Mathematics), Volume 349 (1973) | DOI | Zbl

[7] Gerd Faltings Hodge–Tate structures and modular forms, Math. Ann., Volume 278 (1987), pp. 133-149 | DOI | MR | Zbl

[8] Jean-Marc Fontaine Le corps des périodes p-adiques, Périodes p-adiques (Astérisque), Volume 223, Société Mathématique de France, 1994, pp. 59-111 | Numdam | Zbl

[9] Jean-Marc Fontaine Représentations p-adiques semi-stables, Périodes p-adiques (Astérisque), Volume 223, Société Mathématique de France, 1994, pp. 113-184 | Numdam | Zbl

[10] Alexandre Grothendieck Le groupe de Brauer, Dix exposés sur la cohomologie des schémas (Advanced Studies in Pure Mathematics (Amsterdam)), Volume 3 (1968) | Zbl

[11] Luc Illusie Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979), pp. 501-661 | DOI | Numdam | MR | Zbl

[12] Steven L Kleiman The Picard scheme, Fundamental Algebraic Geometry (Mathematical Surveys and Monographs), Volume 123 (2005) | MR

[13] Serge Lang Introduction to Modular Forms (With two appendices, by D. B. Zagier and by W. Feit), Grundlehren der Mathematischen Wissenschaften, 222, Springer, 1976 | Zbl

[14] Carlo Mazza; Vladimir Voevodsky; Charles Weibel Lecture Notes on Motivic Cohomology, Clay Mathematics Monographs, 2, American Mathematical Society, 2006 | MR | Zbl

[15] James S. Milne On a conjecture of Artin and Tate, Ann. Math., Volume 102 (1975), pp. 517-533 | DOI | MR | Zbl

[16] Kenneth A. Ribet Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable V (Lecture Notes in Mathematics), Volume 601 (1977) | DOI | MR | Zbl

[17] Anthony J. Scholl Motives for modular forms, Invent. Math., Volume 100 (1990) no. 2, pp. 419-430 | DOI | MR | Zbl

[18] Matthias Schütt; Tetsuji Shioda Elliptic Surfaces, Algebraic geometry in East Asia – Seoul 2008 (Advanced Studies in Pure Mathematics), Volume 60, Mathematical Society of Japan, 2010, pp. 51-160 | DOI | MR | Zbl

[19] Jean-Pierre Serre Quelques applications du théorème de densité de Chebotarev, Publ. Math., Inst. Hautes Étud. Sci., Volume 54 (1981), pp. 123-201 | DOI | Numdam | Zbl

[20] Tetsuji Shioda On elliptic modular surfaces, J. Math. Soc. Japan, Volume 24 (1972), pp. 20-59 | DOI | MR | Zbl

[21] Tetsuji Shioda Algebraic cycles on certain K3 surfaces in characteristic p, Manifolds–Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) (1975), pp. 357-364 | Zbl

Cité par Sources :