En 2011, Deshouillers et Ruzsa [5] ont donné des arguments en faveur de la non-automaticité de la suite des derniers chiffres non nuls de en base . Cette assertion a été prouvée quelques années plus tard par Deshoulliers [4]. Dans cet article, nous donnons une preuve alternative qui nous permet de généraliser le problème et donner une caractérisation complète des bases pour lesquelles la suite des derniers chiffres non nuls de est automatique.
In 2011 Deshouillers and Ruzsa [5] tried to argue that the sequence of the last nonzero digit of in base 12 is not automatic. This statement was proven a few years later by Deshoulliers in [4]. In this paper we provide an alternate proof that lets us generalize the problem and give an exact characterization of the bases for which the sequence of the last nonzero digits of is automatic.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1080
Mots clés : automatic sequence, factorial, the last nonzero digit
@article{JTNB_2019__31_1_283_0, author = {Eryk Lipka}, title = {Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {283--291}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {1}, year = {2019}, doi = {10.5802/jtnb.1080}, mrnumber = {3994731}, zbl = {07246525}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1080/} }
TY - JOUR AU - Eryk Lipka TI - Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 283 EP - 291 VL - 31 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1080/ DO - 10.5802/jtnb.1080 LA - en ID - JTNB_2019__31_1_283_0 ER -
%0 Journal Article %A Eryk Lipka %T Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base %J Journal de théorie des nombres de Bordeaux %D 2019 %P 283-291 %V 31 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1080/ %R 10.5802/jtnb.1080 %G en %F JTNB_2019__31_1_283_0
Eryk Lipka. Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 283-291. doi : 10.5802/jtnb.1080. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1080/
[1] Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, 2003 | Zbl
[2] A density version of Cobham’s theorem (2017) (https://arxiv.org/abs/1710.07261) | Zbl
[3] A footnote to The least non zero digit of in base 12, Unif. Distrib. Theory, Volume 7 (2012) no. 1, pp. 71-73 | Zbl
[4] Yet another footnote to The least non zero digit of in base 12, Unif. Distrib. Theory, Volume 11 (2016) no. 2, pp. 163-167 | DOI | Zbl
[5] The least non zero digit of in base 12, Publ. Math., Volume 79 (2011) no. 3-4, pp. 395-400 | Zbl
[6] Théorie des nombres, Firmin Didot frères, 1830 | Zbl
[7] On the representation of an integer in two different bases, J. Reine Angew. Math., Volume 319 (1980), pp. 63-72 | MR | Zbl
Cité par Sources :