Automaticity of the sequence of the last nonzero digits of n! in a fixed base
Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 283-291.

En 2011, Deshouillers et Ruzsa [5] ont donné des arguments en faveur de la non-automaticité de la suite des derniers chiffres non nuls de n! en base 12. Cette assertion a été prouvée quelques années plus tard par Deshoulliers [4]. Dans cet article, nous donnons une preuve alternative qui nous permet de généraliser le problème et donner une caractérisation complète des bases pour lesquelles la suite des derniers chiffres non nuls de n! est automatique.

In 2011 Deshouillers and Ruzsa [5] tried to argue that the sequence of the last nonzero digit of n! in base 12 is not automatic. This statement was proven a few years later by Deshoulliers in [4]. In this paper we provide an alternate proof that lets us generalize the problem and give an exact characterization of the bases for which the sequence of the last nonzero digits of n! is automatic.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1080
Classification : 11B85, 11A63, 68Q45, 68R15
Mots clés : automatic sequence, factorial, the last nonzero digit
Eryk Lipka 1

1 Potok 448 38-404 Krosno, Poland
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2019__31_1_283_0,
     author = {Eryk Lipka},
     title = {Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {283--291},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {31},
     number = {1},
     year = {2019},
     doi = {10.5802/jtnb.1080},
     mrnumber = {3994731},
     zbl = {07246525},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1080/}
}
TY  - JOUR
AU  - Eryk Lipka
TI  - Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2019
SP  - 283
EP  - 291
VL  - 31
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1080/
DO  - 10.5802/jtnb.1080
LA  - en
ID  - JTNB_2019__31_1_283_0
ER  - 
%0 Journal Article
%A Eryk Lipka
%T Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base
%J Journal de théorie des nombres de Bordeaux
%D 2019
%P 283-291
%V 31
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1080/
%R 10.5802/jtnb.1080
%G en
%F JTNB_2019__31_1_283_0
Eryk Lipka. Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 283-291. doi : 10.5802/jtnb.1080. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1080/

[1] Jean-Paul Allouche; Jeffrey Shallit Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, 2003 | Zbl

[2] Jakub Byszewski; Jakub Konieczny A density version of Cobham’s theorem (2017) (https://arxiv.org/abs/1710.07261) | Zbl

[3] Jean-Marc Deshouillers A footnote to The least non zero digit of n! in base 12, Unif. Distrib. Theory, Volume 7 (2012) no. 1, pp. 71-73 | Zbl

[4] Jean-Marc Deshouillers Yet another footnote to The least non zero digit of n! in base 12, Unif. Distrib. Theory, Volume 11 (2016) no. 2, pp. 163-167 | DOI | Zbl

[5] Jean-Marc Deshouillers; Imre Ruzsa The least non zero digit of n! in base 12, Publ. Math., Volume 79 (2011) no. 3-4, pp. 395-400 | Zbl

[6] Adrien-Marie Legendre Théorie des nombres, Firmin Didot frères, 1830 | Zbl

[7] Cameron L. Stewart On the representation of an integer in two different bases, J. Reine Angew. Math., Volume 319 (1980), pp. 63-72 | MR | Zbl

Cité par Sources :