In 2011 Deshouillers and Ruzsa [5] tried to argue that the sequence of the last nonzero digit of
En 2011, Deshouillers et Ruzsa [5] ont donné des arguments en faveur de la non-automaticité de la suite des derniers chiffres non nuls de
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1080
Mots-clés : automatic sequence, factorial, the last nonzero digit
Eryk Lipka 1

@article{JTNB_2019__31_1_283_0, author = {Eryk Lipka}, title = {Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {283--291}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {1}, year = {2019}, doi = {10.5802/jtnb.1080}, mrnumber = {3994731}, zbl = {07246525}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1080/} }
TY - JOUR AU - Eryk Lipka TI - Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 283 EP - 291 VL - 31 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1080/ DO - 10.5802/jtnb.1080 LA - en ID - JTNB_2019__31_1_283_0 ER -
%0 Journal Article %A Eryk Lipka %T Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base %J Journal de théorie des nombres de Bordeaux %D 2019 %P 283-291 %V 31 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1080/ %R 10.5802/jtnb.1080 %G en %F JTNB_2019__31_1_283_0
Eryk Lipka. Automaticity of the sequence of the last nonzero digits of $n!$ in a fixed base. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 283-291. doi : 10.5802/jtnb.1080. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1080/
[1] Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, 2003 | Zbl
[2] A density version of Cobham’s theorem (2017) (https://arxiv.org/abs/1710.07261) | Zbl
[3] A footnote to The least non zero digit of
[4] Yet another footnote to The least non zero digit of
[5] The least non zero digit of
[6] Théorie des nombres, Firmin Didot frères, 1830 | Zbl
[7] On the representation of an integer in two different bases, J. Reine Angew. Math., Volume 319 (1980), pp. 63-72 | MR | Zbl
Cité par Sources :