Dans cet article, on obtient une majoration optimale du nombre de façons d’écrire le monôme comme produit de facteurs linéaires sur . La démonstration utilise une récurrence pour estimer le nombre de solutions d’un certain système de congruences polynomiales. La méthode s’applique également aux systèmes de congruences polynomiales plus généraux qui satisfont une hypothèse de non-dégénérescence.
A sharp bound is obtained for the number of ways to express the monomial as a product of linear factors over . The proof relies on an induction-on-scale procedure which is used to estimate the number of solutions to a certain system of polynomial congruences. The method also applies to more general systems of polynomial congruences that satisfy a non-degeneracy hypothesis.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1079
Mots clés : Factorising polynomials, congruence equations, Igusa conjecture
@article{JTNB_2019__31_1_255_0, author = {Jonathan Hickman and James Wright}, title = {Counting factorisations of monomials over rings of integers modulo $N$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {255--282}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {1}, year = {2019}, doi = {10.5802/jtnb.1079}, mrnumber = {3994730}, zbl = {07246524}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1079/} }
TY - JOUR AU - Jonathan Hickman AU - James Wright TI - Counting factorisations of monomials over rings of integers modulo $N$ JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 255 EP - 282 VL - 31 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1079/ DO - 10.5802/jtnb.1079 LA - en ID - JTNB_2019__31_1_255_0 ER -
%0 Journal Article %A Jonathan Hickman %A James Wright %T Counting factorisations of monomials over rings of integers modulo $N$ %J Journal de théorie des nombres de Bordeaux %D 2019 %P 255-282 %V 31 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1079/ %R 10.5802/jtnb.1079 %G en %F JTNB_2019__31_1_255_0
Jonathan Hickman; James Wright. Counting factorisations of monomials over rings of integers modulo $N$. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 255-282. doi : 10.5802/jtnb.1079. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1079/
[1] Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer, 1976 | Zbl
[2] Counting points on curves over finite fields (d’après S. A. Stepanov), Séminaire Bourbaki, 25ème année (1972/1973) (Lecture Notes in Mathematics), Springer, 1974, pp. 234-241 | DOI | Numdam | Zbl
[3] Igusa and Denef–Sperber conjectures on nondegenerate -adic exponential sums, Duke Math. J., Volume 141 (2008) no. 1, pp. 205-216 | DOI | MR | Zbl
[4] Exponential sums: questions by Denef, Sperber, and Igusa, Trans. Am. Math. Soc., Volume 362 (2010) no. 7, pp. 3745-3756 | DOI | MR | Zbl
[5] Analytic van der Corput lemma for -adic and oscillatory integrals, singular Fourier transforms, and restriction theorems, Expo. Math., Volume 29 (2011) no. 4, pp. 371-386 | DOI | MR | Zbl
[6] La conjecture de Weil. I, Publ. Math., Inst. Hautes Étud. Sci., Volume 43 (1974), pp. 273-307 | DOI | Numdam | Zbl
[7] Report on Igusa’s local zeta function, Séminaire Bourbaki. Volume 1990/91 (Astérisque), Volume 201-203, Société Mathématique de France, 1991, pp. 201-203 | Numdam | Zbl
[8] Exponential sums mod and Newton polyhedra, Bull. Belg. Math. Soc. Simon Stevin (2001), pp. 55-63 | MR | Zbl
[9] Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer, 1995 | Zbl
[10] An abstract Fourier restriction theorem (2018) (https://arxiv.org/abs/1801.03180) | Zbl
[11] The Fourier restriction and Kakeya problems over rings of integers modulo , Discrete Anal., Volume 2018 (2018) no. 11, 11, 54 pages | MR | Zbl
[12] Forms of higher degree, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 59, Tata Institute of Fundamental Research, 1978 | MR | Zbl
[13] An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, 14, American Mathematical Society, 2000 | MR | Zbl
[14] Regular sequences of power sums and complete symmetric polynomials, Matematiche, Volume 67 (2012) no. 1, pp. 103-117 | MR | Zbl
[15] Introduction to commutative algebra and algebraic geometry, Modern Birkhäuser Classics, Birkhäuser/Springer, 1980 | Zbl
[16] On the number of points of algebraic sets over finite fields, J. Pure Appl. Algebra, Volume 219 (2015) no. 11, pp. 5117-5136 | DOI | MR | Zbl
[17] Number of points of varieties in finite fields, Am. J. Math., Volume 76 (1954), pp. 819-827 | DOI | MR | Zbl
[18] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Clarendon Press, 1995 | Zbl
[19] The number of points of a hyperelliptic curve over a finite prime field, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 33 (1969), pp. 1171-1181 | MR | Zbl
[20] A note on simultaneous congruences, J. Number Theory, Volume 58 (1996) no. 2, pp. 288-297 | DOI | MR | Zbl
[21] Exponential sums and polynomial congruences in two variables: the quasi-homogeneous case (2012) (https://arxiv.org/abs/1202.2686)
Cité par Sources :