Soit une variété abélienne définie sur un corps de nombres . On fixe un nombre premier et pour tout nombre naturel on note le corps engendré sur par les coordonnées des points de -torsion de . Nous donnons une minoration de l’ordre de la -partie du groupe de classes de pour , en construisant une extension non ramifiée suffisamment grande de Cette minoration dépend du rang du groupe de Mordell–Weil de et de la réduction des points de -torsion en nombres premiers au-dessus de .
Let be an abelian variety defined over a number field . Fix a prime and a natural number and consider the field , obtained by adjoining to all the coordinates of the -torsion points of . We give a lower bound on the -part of the class group of for large , by finding a large unramified extension of . This lower bound depends on the Mordell–Weil rank of and the reduction of -torsion points modulo primes above .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1077
Mots clés : division fields, class number, abelian varieties
@article{JTNB_2019__31_1_227_0, author = {J\k{e}drzej Garnek}, title = {On class numbers of division fields of abelian varieties}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {227--242}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {1}, year = {2019}, doi = {10.5802/jtnb.1077}, mrnumber = {3994728}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1077/} }
TY - JOUR AU - Jędrzej Garnek TI - On class numbers of division fields of abelian varieties JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 227 EP - 242 VL - 31 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1077/ DO - 10.5802/jtnb.1077 LA - en ID - JTNB_2019__31_1_227_0 ER -
%0 Journal Article %A Jędrzej Garnek %T On class numbers of division fields of abelian varieties %J Journal de théorie des nombres de Bordeaux %D 2019 %P 227-242 %V 31 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1077/ %R 10.5802/jtnb.1077 %G en %F JTNB_2019__31_1_227_0
Jędrzej Garnek. On class numbers of division fields of abelian varieties. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 227-242. doi : 10.5802/jtnb.1077. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1077/
[1] Detecting linear dependence by reduction maps, J. Number Theory, Volume 115 (2005) no. 2, pp. 322-342 | DOI | MR | Zbl
[2] The cohomology of abelian varieties over a number field, Russ. Math. Surv., Volume 27 (1972) no. 6, pp. 25-70 | DOI | MR | Zbl
[3] Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 21, Springer, 1990 | Zbl
[4] There are genus one curves of every index over every infinite, finitely generated field, J. Reine Angew. Math., Volume 794 (2019), pp. 65-86 | DOI | MR | Zbl
[5] Local torsion on elliptic curves and the deformation theory of Galois representations, Math. Res. Lett., Volume 15 (2008) no. 2-3, pp. 599-611 | DOI | MR | Zbl
[6] Explicit determination of the images of the Galois representations attached to abelian surfaces with , Exp. Math., Volume 11 (2003) no. 4, pp. 503-512 | DOI | MR | Zbl
[7] Iwasawa -invariants and Mordell–Weil ranks of abelian varieties with complex multiplication, Acta Arith., Volume 127 (2007) no. 4, pp. 305-307 | DOI | MR | Zbl
[8] On -degree of elliptic curves, Int. J. Number Theory, Volume 14 (2018) no. 3, pp. 693-704 | DOI | MR | Zbl
[9] Iwasawa theory—past and present, Class field theory—its centenary and prospect (Tokyo, 1998) (Advanced Studies in Pure Mathematics), Volume 30, Mathematical Society of Japan, 2001, pp. 335-385 | DOI | MR | Zbl
[10] Real algebraic curves, Ann. Sci. Éc. Norm. Supér., Volume 14 (1981) no. 2, pp. 157-182 | DOI | Numdam | MR | Zbl
[11] An open-image theorem for a general class of abelian varieties, Bull. Lond. Math. Soc., Volume 43 (2011) no. 4, pp. 703-711 | DOI | MR | Zbl
[12] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | Zbl
[13] Local torsion primes and the class numbers associated to an elliptic curve over (2017) (https://arxiv.org/abs/1703.08275)
[14] Maximality of Galois actions for compatible systems, Duke Math. J., Volume 80 (1995) no. 3, pp. 601-630 | DOI | MR | Zbl
[15] Linear algebraic groups and finite groups of Lie type, Cambridge Studies in Advanced Mathematics, 133, Cambridge University Press, 2011 | MR | Zbl
[16] Abelian varieties over -adic ground fields, Ann. Math., Volume 62 (1955), pp. 92-119 | DOI | MR | Zbl
[17] Abelian varieties, Tata Institute of Fundamental Research, 2008 corrected reprint of the second (1974) edition | Zbl
[18] Hodge Cycles and Crystalline Cohomology, Hodge cycles, motives, and Shimura varieties (Lecture Notes in Mathematics), Volume 900, Springer, 1981, pp. 357-414 | DOI | Zbl
[19] Big monodromy theorem for abelian varieties over finitely generated fields, J. Pure Appl. Algebra, Volume 217 (2013) no. 2, pp. 218-229 | DOI | MR | Zbl
[20] Kummer theory on extensions of abelian varieties by tori, Duke Math. J., Volume 46 (1979) no. 4, pp. 745-761 | DOI | MR | Zbl
[21] On the class numbers of the fields of the -torsion points of certain elliptic curves over , J. Number Theory, Volume 156 (2015), pp. 277-289 | DOI | MR | Zbl
[22] On the class numbers of the fields of the -torsion points of elliptic curves over (2016) (https://arxiv.org/abs/1603.01296)
[23] Abelian -adic representations and elliptic curves, Advanced Book Classics, Addison-Wesley Publishing Company, 1989 | Zbl
[24] Lie algebras and Lie groups. 1964 lecture,s given at Harvard University, Lecture Notes in Mathematics, 1500, Springer, 1992 | Zbl
[25] Oeuvres/Collected papers. IV. 1985–1998, Springer Collected Works in Mathematics, Springer, 2013 | Zbl
[26] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994 | MR | Zbl
[27] Commutator structure of symplectic groups, Mat. Zametki, Volume 24 (1978) no. 5, pp. 641-648 | MR | Zbl
[28] Reduced symmetric powers of natural realizations of the groups and and their restrictions to subgroups, Sib. Math. J., Volume 31 (1990) no. 4, pp. 33-46 | Zbl
[29] The -functions and modular forms database, 2017 (http://www.lmfdb.org)
Cité par Sources :