Nous donnons une condition nécessaire et suffisante pour qu’une racine strictement supérieure à
We present a necessary and sufficient condition for a root greater than unity of a monic reciprocal polynomial of an even degree at least four, with integer coefficients, to be a Salem number. This condition requires that the minimal polynomial of some power of the algebraic integer has a linear coefficient that is relatively large. We also determine the probability that an arbitrary power of a Salem number, of certain small degrees, satisfies this condition.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1076
Mots-clés : Salem number,
Dragan Stankov 1

@article{JTNB_2019__31_1_215_0, author = {Dragan Stankov}, title = {A necessary and sufficient condition for an algebraic integer to be a {Salem} number}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {215--226}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {1}, year = {2019}, doi = {10.5802/jtnb.1076}, mrnumber = {3994727}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1076/} }
TY - JOUR AU - Dragan Stankov TI - A necessary and sufficient condition for an algebraic integer to be a Salem number JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 215 EP - 226 VL - 31 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1076/ DO - 10.5802/jtnb.1076 LA - en ID - JTNB_2019__31_1_215_0 ER -
%0 Journal Article %A Dragan Stankov %T A necessary and sufficient condition for an algebraic integer to be a Salem number %J Journal de théorie des nombres de Bordeaux %D 2019 %P 215-226 %V 31 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1076/ %R 10.5802/jtnb.1076 %G en %F JTNB_2019__31_1_215_0
Dragan Stankov. A necessary and sufficient condition for an algebraic integer to be a Salem number. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 215-226. doi : 10.5802/jtnb.1076. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1076/
[1] Pisot and Salem numbers, Birkhäuser, 1992 | Zbl
[2] Distribution modulo one and diophantine approximation, Cambridge Tracts in Mathematics, 193, Cambridge University Press, 2012 | MR | Zbl
[3] Self-inversive polynomials whose zeros are on the unit circle, Publ. Math., Volume 65 (2004) no. 3-4, pp. 409-420 | MR | Zbl
[4] The Theory of Matrices, Computer Science and Applied Mathematics, Academic Press Inc., 1985 | Zbl
[5] Introduction to Finite Fields and Their Applications, Cambridge University Press, 1986 | Zbl
[6] List of small Salem numbers (http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html)
[7] Seventy years of Salem numbers: a survey, Bull. Lond. Math. Soc., Volume 47 (2015) no. 3, pp. 379-395 | DOI | MR | Zbl
[8] On the distribution modulo 1 of the sum of powers of a Salem number, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 6, pp. 569-576 | DOI | MR | Zbl
[9] On the number of roots of self-inversive polynomials on the complex unit circle, Ramanujan J., Volume 42 (2017) no. 2, pp. 363-369 | DOI | MR | Zbl
[10] An arithmetical property of powers of Salem numbers, J. Number Theory, Volume 120 (2006) no. 1, pp. 179-191 | DOI | MR | Zbl
Cité par Sources :