Dans cet article, nous généralisons l’identité de Perron pour les minima de Markov. Nous exprimons les valeurs des formes quadratiques binaires à discriminant positif en termes des fractions continues associées aux lignes brisées passant par les points où les valeurs sont calculées.
In this paper, we generalize the Perron Identity for Markov minima. We express the values of binary quadratic forms with positive discriminant in terms of continued fractions associated to broken lines passing through the points where the values are computed.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1071
Mots clés : Geometry of continued fractions, Perron Identity, binary quadratic indefinite form
@article{JTNB_2019__31_1_131_0, author = {Oleg Karpenkov and Matty van-Son}, title = {Generalized {Perron} {Identity} for broken lines}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {131--144}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {1}, year = {2019}, doi = {10.5802/jtnb.1071}, mrnumber = {3994722}, zbl = {07246516}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1071/} }
TY - JOUR AU - Oleg Karpenkov AU - Matty van-Son TI - Generalized Perron Identity for broken lines JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 131 EP - 144 VL - 31 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1071/ DO - 10.5802/jtnb.1071 LA - en ID - JTNB_2019__31_1_131_0 ER -
%0 Journal Article %A Oleg Karpenkov %A Matty van-Son %T Generalized Perron Identity for broken lines %J Journal de théorie des nombres de Bordeaux %D 2019 %P 131-144 %V 31 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1071/ %R 10.5802/jtnb.1071 %G en %F JTNB_2019__31_1_131_0
Oleg Karpenkov; Matty van-Son. Generalized Perron Identity for broken lines. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 131-144. doi : 10.5802/jtnb.1071. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1071/
[1] The Markoff and Lagrange Spectra, Mathematical Surveys and Monographs, 30, American Mathematical Society, 1989 | MR | Zbl
[2] On the product of three homogeneous linear forms. I, Proc. Lond. Math. Soc., Volume 13 (1938), pp. 139-145 | DOI | MR | Zbl
[3] On the product of three homogeneous linear forms. II, Proc. Lond. Math. Soc., Volume 44 (1938), pp. 412-431 | DOI | MR
[4] On the product of three homogeneous linear forms. III, Proc. Lond. Math. Soc., Volume 45 (1939), pp. 98-125 | DOI | MR | Zbl
[5] Dual Teichmüller and lamination spaces, Handbook of Teichmüller theory. Volume I (IRMA Lectures in Mathematics and Theoretical Physics), Volume 11, European Mathematical Society, 2007, pp. 647-684 | DOI | Zbl
[6] Elementary notions of lattice trigonometry, Math. Scand., Volume 102 (2008) no. 2, pp. 161-205 | DOI | MR | Zbl
[7] On irrational lattice angles, Funct. Anal. Other Math., Volume 2 (2009) no. 2-4, pp. 221-239 | DOI | MR | Zbl
[8] On determination of periods of geometric continued fractions for two-dimensional algebraic hyperbolic operators, Math. Notes, Volume 88 (2010) no. 1-2, pp. 28-38 Russian version: Mat. Zametki 88 (2010), n° 1, p. 30–42 | DOI | MR | Zbl
[9] Continued fractions and the second kepler law, Manuscr. Math., Volume 134 (2011) no. 1-2, pp. 157-169 | DOI | MR | Zbl
[10] Geometry of Continued Fractions, Algorithms and Computation in Mathematics, 26, Springer, 2013 | MR | Zbl
[11] Continued fractions, hyperbolic geometry and quadratic forms, MASS selecta: teaching and learning advanced undergraduate mathematics, American Mathematical Society, 2003, pp. 121-160 | MR | Zbl
[12] Period functions and the Selberg zeta function for the modular group, The mathematical beauty of physics (Saclay, 1996) (Advanced Series in Mathematical Physics), Volume 24, World Scientific, 1996, pp. 83-97 | Zbl
[13] Continued fractions, modular symbols, and noncommutative geometry, Sel. Math., New Ser., Volume 8 (2002) no. 3, pp. 475-521 | DOI | MR | Zbl
[14] Sur les formes quadratiques binaires indefinies. (second mémoire), Math. Ann., Volume 17 (1880), pp. 379-399
[15] Über die Approximation irrationaler Zahlen durch rationale II, Heidelberger Akademie der Wissenschaften, 1921 | Zbl
[16] Markov Numbers, Mather’s function and stable norm (2017) (https://arxiv.org/abs/1707.03901) | Zbl
Cité par Sources :