We prove a variational open adelic image theorem for the Galois action on the cohomology of smooth proper -schemes where is a smooth variety over a finitely generated field of positive characteristic. A central tool is a recent result of Cadoret, Hui and Tamagawa.
Nous démontrons un théorème de l’image adélique ouverte variationnel pour l’action du groupe de Galois sur la cohomologie d’un -schéma propre et lisse, où est une variété lisse sur un corps de type fini sur . Notre outil clé est un résultat récent de Cadoret, Hui et Tamagawa.
Revised:
Accepted:
Published online:
Classification: 11G10, 14K15
Keywords: Compatible system, adelic openness, positive characteristic
Author's affiliations:
@article{JTNB_2018__30_3_965_0, author = {Gebhard B\"ockle and Wojciech Gajda and Sebastian Petersen}, title = {A variational open image theorem in positive characteristic}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {965--977}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1059}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1059/} }
TY - JOUR TI - A variational open image theorem in positive characteristic JO - Journal de Théorie des Nombres de Bordeaux PY - 2018 DA - 2018/// SP - 965 EP - 977 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1059/ UR - https://doi.org/10.5802/jtnb.1059 DO - 10.5802/jtnb.1059 LA - en ID - JTNB_2018__30_3_965_0 ER -
Gebhard Böckle; Wojciech Gajda; Sebastian Petersen. A variational open image theorem in positive characteristic. Journal de Théorie des Nombres de Bordeaux, Volume 30 (2018) no. 3, pp. 965-977. doi : 10.5802/jtnb.1059. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1059/
[1] Altération de variétés algébriques, Séminaire Bourbaki. Volume 1995/96 (Astérisque) Volume 241, Société Mathématique de France, 1997, pp. 273-311 | Zbl: 0924.14007
[2] Independence of -adic representations of geometric Galois groups, J. Reine Angew. Math., Volume 736 (2015), pp. 69-93 | Article | Zbl: 0684.7718
[3] An open adelic image theorem for motivic representations over function fields (to appear in Math. Res. Lett., https://webusers.imj-prg.fr/~anna.cadoret/Cadoret_MRL.pdf)
[4] An open adelic image theorem for abelian schemes, Int. Math. Res. Not., Volume 2015 (2015) no. 20, pp. 10208-10242 | Zbl: 1352.14030
[5] Geometric monodromy - semisimplicity and maximality, Ann. Math., Volume 186 (2017) no. 1, pp. 205-236
[6] Galois generic points on Shimura varieties, Algebra Number Theory, Volume 10 (2016) no. 9, pp. 1893-1934 | Zbl: 06657570
[7] On the geometric image of -linear representations of étale fundamental groups, Int. Math. Res. Not. (2017), rnx193 (Art. ID rnx193) | Article
[8] La conjecture de Weil I, Publ. Math., Inst. Hautes Étud. Sci., Volume 43 (1974), pp. 273-307 | Zbl: 0287.14001
[9] La conjecture de Weil II, Publ. Math., Inst. Hautes Étud. Sci., Volume 52 (1980), pp. 137-252
[10] Analytic pro- groups, Cambridge Studies in Advanced Mathematics, Volume 61, Cambridge University Press, 1999, xviii+368 pages | Zbl: 0934.20001
[11] On a conjecture of Deligne, Mosc. Math. J., Volume 12 (2012) no. 3, pp. 515-542
[12] Adelic openness without the Mumford–Tate conjecture (2013) (https://arxiv.org/abs/1312.3812)
[13] On different notions of tameness in arithmetic geometry, Math. Ann., Volume 346 (2010) no. 3, pp. 641-668 | Zbl: 1185.14019
[14] On -independence of algebraic monodromy groups in compatible systems of representations, Invent. Math., Volume 107 (1992) no. 3, pp. 603-636 | Zbl: 0778.11036
[15] Abelian varieties, -adic representations and -independence, Math. Ann., Volume 302 (1995) no. 3, pp. 561-579 | Zbl: 0867.14019
[16] Algebraic Groups – The theory of group schemes of finite type over a field (Lecture notes available at www.jmilne.org)
[17] Étale Cohomology, Princeton Mathematical Series, Volume 33, Princeton University Press, 1980, xiii+323 pages | Zbl: 0433.14012
[18] A Combination of the conjectures of Mordell-Lang and André-Oort, Math. Ann., Volume 302 (1995) no. 3, pp. 561-579
[19] Sur les groupes de Galois attachés aux groups -divisible, Proceedings on a conference on local fields, Springer, 1967
[20] Lectures on the Mordell-Weil theorem, Aspects of Mathematics, Volume E15, Viehweg, 1989 | Zbl: 0676.14005
[21] Lettre à Ken Ribet du 1/1/1981 et du 29/1/1981, Collected papers. Vol. IV: 1985–1998, Springer, 2000
Cited by Sources: