Let and let be an integer such that if and if . For positive integer , we prove that if the product of any two distinct elements of the set
increased by is a perfect square, then or
Consequently, combining this result with a recent result of Filipin, Fujita and Togbé, we show that all Diophantine quadruples of the form are regular.
Soit et soit un entier tel que si et si . Pour tout eniter positif , nous démontrons que si le produit de deux éléments distincts de l’ensemble
augmenté de est un carré parfait, alors ou
Par conséquence, en combinant ce résultat avec un résultat récent de Filipin, Fujita et Togbé, nous provons que tous les quadruplets diophantiens de la forme sont réguliers.
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1055
Keywords: Diophantine $m$-tuples, Pell equations, Baker’s method, Reduction method
@article{JTNB_2018__30_3_879_0, author = {Bo He and Keli Pu and Rulin Shen and Alain Togb\'e}, title = {A note on the regularity of the {Diophantine} pair $\protect \lbrace k,4k\pm 4\protect \rbrace $}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {879--892}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1055}, zbl = {1446.11050}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1055/} }
TY - JOUR AU - Bo He AU - Keli Pu AU - Rulin Shen AU - Alain Togbé TI - A note on the regularity of the Diophantine pair $\protect \lbrace k,4k\pm 4\protect \rbrace $ JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 879 EP - 892 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1055/ DO - 10.5802/jtnb.1055 LA - en ID - JTNB_2018__30_3_879_0 ER -
%0 Journal Article %A Bo He %A Keli Pu %A Rulin Shen %A Alain Togbé %T A note on the regularity of the Diophantine pair $\protect \lbrace k,4k\pm 4\protect \rbrace $ %J Journal de théorie des nombres de Bordeaux %D 2018 %P 879-892 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1055/ %R 10.5802/jtnb.1055 %G en %F JTNB_2018__30_3_879_0
Bo He; Keli Pu; Rulin Shen; Alain Togbé. A note on the regularity of the Diophantine pair $\protect \lbrace k,4k\pm 4\protect \rbrace $. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 3, pp. 879-892. doi : 10.5802/jtnb.1055. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1055/
[1] On Euler’s solution of a problem of Diophantus, Fibonacci Q., Volume 17 (1979), pp. 333-339 | MR | Zbl
[2] The equations and , Q. J. Math, Volume 20 (1969), pp. 129-137 | MR | Zbl
[3] On the family of Diophantine triples , Glasg. Math. J., Volume 49 (2007), pp. 333-344 | DOI | MR | Zbl
[4] The problem of the extension of a parametric family of Diophantine triples, Publ. Math., Volume 51 (1997) no. 3-4, pp. 311-322 | MR | Zbl
[5] An absolute bound for the size of Diophantine -tuples, J. Number Theory, Volume 89 (2001) no. 1, pp. 126-150 | DOI | MR | Zbl
[6] There are only finitely many Diophantine quintuples, J. Reine Angew. Math., Volume 566 (2004), pp. 183-214 | MR | Zbl
[7] A generalization of a theorem of Baker and Davenport, Q. J. Math, Volume 49 (1998) no. 195, pp. 291-306 | DOI | MR | Zbl
[8] The extendibility of Diophantine pairs I: the general case, Glas. Mat., III. Ser., Volume 49 (2014) no. 1, pp. 25-36 | DOI | MR | Zbl
[9] The extendibility of Diophantine pairs II: Examples, J. Number Theory, Volume 145 (2014), pp. 604-631 | DOI | MR | Zbl
[10] The extensibility of Diophantine pairs , J. Number Theory, Volume 128 (2008) no. 2, pp. 322-353 | DOI | MR | Zbl
[11] There is no Diophantine Quintuple, Trans. Am. Math. Soc., Volume 371 (2019) no. 9, pp. 6665-6709 | DOI | MR | Zbl
[12] Linear forms in two logarithms and interpolation determinants II, Acta Arith., Volume 133 (2008) no. 4, pp. 325-348 | DOI | MR | Zbl
Cited by Sources: