Recently, Beresnevich, Vaughan, Velani, and Zorin gave in [2] some sufficient conditions for a manifold to be of Khinchin type for convergence. We show that their techniques can be used in a more optimal way to yield stronger results. In the process we also improve a theorem of Dodson, Rynne, and Vickers [5].
Récemment, Beresnevich, Vaughan, Velani et Zorin [2] ont donné des conditions suffisantes pour qu’une variété soit de type Khinchin pour la convergence. Nous montrons que leurs techniques peuvent être utilisées de manière plus optimale pour obtenir des résultats plus solides. Dans le processus, nous améliorons également un théorème de Dodson, Rynne et Vickers [5].
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1021
Keywords: Diophantine approximation, Khinchin type for convergence, Hausdorff dimension, rational points near manifolds
@article{JTNB_2018__30_1_175_0, author = {David Simmons}, title = {Some manifolds of {Khinchin} type for convergence}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {175--193}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {1}, year = {2018}, doi = {10.5802/jtnb.1021}, zbl = {1408.11068}, mrnumber = {3809714}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1021/} }
TY - JOUR AU - David Simmons TI - Some manifolds of Khinchin type for convergence JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 175 EP - 193 VL - 30 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1021/ DO - 10.5802/jtnb.1021 LA - en ID - JTNB_2018__30_1_175_0 ER -
%0 Journal Article %A David Simmons %T Some manifolds of Khinchin type for convergence %J Journal de théorie des nombres de Bordeaux %D 2018 %P 175-193 %V 30 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1021/ %R 10.5802/jtnb.1021 %G en %F JTNB_2018__30_1_175_0
David Simmons. Some manifolds of Khinchin type for convergence. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 1, pp. 175-193. doi : 10.5802/jtnb.1021. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1021/
[1] Inhomogeneous Diophantine approximation on planar curves, Math. Ann., Volume 349 (2011) no. 4, pp. 929-942 | DOI | MR | Zbl
[2] Diophantine approximation on manifolds and the distribution of rationals: contributions to the convergence theory, Int. Math. Res. Not., Volume 2017 (2017) no. 10, pp. 2885-2908 | DOI | MR | Zbl
[3] Metric Diophantine approximation on manifolds, Cambridge Tracts in Mathematics, 137, Cambridge University Press, 1999, xi+172 pages | MR | Zbl
[4] Using algebraic geometry, Graduate Texts in Mathematics, 185, Springer, 2005, xii+572 pages | MR | Zbl
[5] Metric Diophantine approximation and Hausdorff dimension on manifolds, Math. Proc. Camb. Philos. Soc., Volume 105 (1989) no. 3, pp. 547-558 | DOI | MR | Zbl
[6] Khintchine-type theorems on manifolds, Acta Arith., Volume 57 (1991) no. 2, pp. 115-130 | DOI | MR | Zbl
[7] Geometry of sets and measures in Euclidean spaces: Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, 1995, xii+343 pages | Zbl
[8] Diophantine approximation on planar curves: the convergence theory, Invent. Math., Volume 166 (2006) no. 1, pp. 103-124 | DOI | MR | Zbl
Cited by Sources: