In this paper, we define finite Carlitz multiple polylogarithms and show that every finite multiple zeta value over the rational function field is an -linear combination of finite Carlitz multiple polylogarithms at integral points. It is completely compatible with the formula for Thakur MZV’s established in [6].
Dans cet article nous définissons la notion de polylogarithme multiple fini de Carlitz et montrons que chaque valeur de zêta multiple finie définie sûr un corps de fonctions rationnelles est une combinaison linéaire des valeurs des polylogarithmes multiples finis de Carlitz evalués en des points entiers. Cela est complètement compatible avec la formule des MZVs de Thakur établie dans [6].
Revised:
Accepted:
Published online:
Keywords: Finite Carlitz multiple polylogarithms, finite multiple zeta values, Anderson–Thakur polynomials
Chieh-Yu Chang 1; Yoshinori Mishiba 2
@article{JTNB_2017__29_3_1049_0, author = {Chieh-Yu Chang and Yoshinori Mishiba}, title = {On finite {Carlitz} multiple polylogarithms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1049--1058}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {3}, year = {2017}, doi = {10.5802/jtnb.1011}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1011/} }
TY - JOUR AU - Chieh-Yu Chang AU - Yoshinori Mishiba TI - On finite Carlitz multiple polylogarithms JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 1049 EP - 1058 VL - 29 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1011/ DO - 10.5802/jtnb.1011 LA - en ID - JTNB_2017__29_3_1049_0 ER -
%0 Journal Article %A Chieh-Yu Chang %A Yoshinori Mishiba %T On finite Carlitz multiple polylogarithms %J Journal de théorie des nombres de Bordeaux %D 2017 %P 1049-1058 %V 29 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1011/ %R 10.5802/jtnb.1011 %G en %F JTNB_2017__29_3_1049_0
Chieh-Yu Chang; Yoshinori Mishiba. On finite Carlitz multiple polylogarithms. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 1049-1058. doi : 10.5802/jtnb.1011. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1011/
[1] Determination of the algebraic relations among special -values in positive characteristic, Ann. Math., Volume 160 (2004) no. 1, pp. 237-313 | DOI | Zbl
[2] Tensor powers of the Carlitz module and zeta values, Ann. Math., Volume 132 (1990) no. 1, pp. 159-191 | DOI | Zbl
[3] Multizeta values for , their period interpretation, and relations between them, Int. Math. Res. Not., Volume 2009 (2009) no. 11, pp. 2038-2055 | Zbl
[4] Exceptional zeros of -series and Bernoulli-Carlitz numbers (2015) (https://arxiv.org/abs/1511.06209v2)
[5] On certain functions connected with polynomials in a Galois field, Duke Math. J., Volume 1 (1935), pp. 137-168 | DOI | Zbl
[6] Linear independence of monomials of multizeta values in positive characteristic, Compos. Math., Volume 150 (2014) no. 11, pp. 1789-1808 | DOI | Zbl
[7] Linear relations among double zeta values in positive characteristic, Camb. J. Math., Volume 4 (2016) no. 3, pp. 289-331 | DOI | Zbl
[8] On multiple polylogarithms in characteristic : -adic vanishing versus -adic Eulerianness (2017) (https://arxiv.org/abs/1511.03490, to appear in Int. Math. Res. Not.)
[9] Algebraic independence of periods and logarithms of Drinfeld modules, J. Am. Math. Soc., Volume 25 (2012) no. 1, pp. 123-150 | DOI | Zbl
[10] Determination of algebraic relations among special zeta values in positive characteristic, Adv. Math., Volume 216 (2007) no. 1, pp. 321-345 | DOI | Zbl
[11] On shuffle of double zeta values over , J. Number Theory, Volume 148 (2015), pp. 153-163 | DOI | Zbl
[12] Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 35, Springer, 1996, xiii+422 pages | Zbl
[13] Finite multiple zeta values (in preparation)
[14] On algebraic independence of certain multizeta values in characteristic , J. Number Theory, Volume 173 (2017), pp. 512-528 | DOI | Zbl
[15] Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms, Invent. Math., Volume 171 (2008) no. 1, pp. 123-174 | DOI | Zbl
[16] On twisted -harmonic series and Carlitz finite zeta values (2016) (https://arxiv.org/abs/1512.05953)
[17] Multizeta in function field arithmetic To appear in the proceedings of the 2009 Banff workshop (published by European Mathematical Society)
[18] Function Field Arithmetic, World Scientific, 2004, xv+388 pages | Zbl
[19] Power sums with applications to multizeta and zeta zero distribution for , Finite Fields Appl., Volume 15 (2009) no. 4, pp. 534-552 | DOI | Zbl
[20] Shuffle Relations for Function Field Multizeta Values, Int. Math. Res. Not., Volume 2010 (2010) no. 11, pp. 1973-1980 | Zbl
[21] Linear relations between multizeta values, University of Arizona (USA) (2015) (Ph. D. Thesis)
[22] Multiple polylogarithms: an introduction., Number theory and discrete mathematics (Chandigarh, 2000) (Trends in Mathematics) (2002), pp. 1-12 | Zbl
[23] Transcendence and special zeta values in characteristic , Ann. Math., Volume 134 (1991) no. 1, pp. 1-23 | DOI | Zbl
[24] Analytic homomorphisms into Drinfeld modules, Ann. Math., Volume 145 (1997) no. 2, pp. 215-233 | DOI | Zbl
[25] Multiple zeta functions, multiple polylogarithms and their special values, Series on Number Theory and Its Applications, 12, World Scientific, 2016, xxi+595 pages | Zbl
Cited by Sources: