We prove a sum-shuffle formula for multiple zeta values in Tate algebras (in positive characteristic), introduced in [9]. This follows from an analog result for double twisted power sums, implying that an -vector space generated by multiple zeta values in Tate algebras is an -algebra.
Nous démontrons une formule de mélange pour des valeurs zêta multiples dans des algèbres de Tate (en caractéristique non nulle) introduites dans [9]. Ce résultat se déduit d’un résultat analogue pour les sommes de puissances tordues et implique que le -espace vectoriel des valeurs zêta multiples dans les algèbres de Tate est une -algèbre.
Revised:
Accepted:
Published online:
Keywords: Multiple zeta values, Function field arithmetic, Carlitz zeta values
Federico Pellarin 1
@article{JTNB_2017__29_3_1025_0, author = {Federico Pellarin}, title = {A sum-shuffle formula for zeta values in {Tate} algebras}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1025--1048}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {3}, year = {2017}, doi = {10.5802/jtnb.1010}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1010/} }
TY - JOUR AU - Federico Pellarin TI - A sum-shuffle formula for zeta values in Tate algebras JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 1025 EP - 1048 VL - 29 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1010/ DO - 10.5802/jtnb.1010 LA - en ID - JTNB_2017__29_3_1025_0 ER -
%0 Journal Article %A Federico Pellarin %T A sum-shuffle formula for zeta values in Tate algebras %J Journal de théorie des nombres de Bordeaux %D 2017 %P 1025-1048 %V 29 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1010/ %R 10.5802/jtnb.1010 %G en %F JTNB_2017__29_3_1025_0
Federico Pellarin. A sum-shuffle formula for zeta values in Tate algebras. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 1025-1048. doi : 10.5802/jtnb.1010. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1010/
[1] Exceptional zeros of -series and Bernoulli-Carlitz numbers (2015) (https://arxiv.org/abs/1511.06209v2)
[2] Functional identities for -series values in positive characteristic, J. Number Theory, Volume 142 (2014), pp. 223-251 | DOI | Zbl
[3] Universal Gauss-Thakur sums and -series, Invent. Math., Volume 200 (2015) no. 2, pp. 653-669 | DOI | Zbl
[4] Arithmetic of positive characteristic -series values in Tate algebras, Compos. Math., Volume 152 (2016) no. 1, pp. 1-61 | DOI | Zbl
[5] Determination of algebraic relations among special zeta values in positive characteristic, Adv. Math., Volume 216 (2007) no. 1, pp. 321-345 | DOI | Zbl
[6] On shuffle of double zeta values over , J. Number Theory, Volume 148 (2015), pp. 153-163 | DOI | Zbl
[7] Formule de classes en caractéristique positive, Université de Normandie (France) (2015) (Ph. D. Thesis)
[8] Values of certain -series in positive characteristic, Ann. Math., Volume 176 (2012) no. 3, pp. 2055-2093 | DOI | Zbl
[9] A note on multiple zeta values in Tate algebras, Riv. Mat. Univ. Parma, Volume 7 (71–100) no. 1, 2016 pages | Zbl
[10] On twisted -harmonic sums and Carlitz finite zeta values (2016) (https://arxiv.org/abs/1512.05953)
[11] Special -values of Drinfeld modules, Ann. Math., Volume 175 (2012) no. 1, pp. 369-391 | DOI | Zbl
[12] Shuffle Relations for Function Field Multizeta Values, Int. Math. Res. Not., Volume 2010 (2010) no. 11, pp. 1973-1980 | Zbl
[13] Power sums of polynomials over finite fields and applications: a survey, Finite Fields Appl., Volume 32 (2015), pp. 171-191 | DOI | Zbl
Cited by Sources: