Dans cet article, nous présentons une nouvelle preuve du théorème central limite de Selberg pour les fonctions de Dirichlet, basée sur une méthode de Radziwiłł et Soundararajan. De plus, nous étudions la propriété d’indépendance pour les variables aléatoires apparaissant dans ce théoréme central limite.
In this article, based on a method of Radziwiłł and Soundararajan, we present a new proof of Selberg’s central limit theorem for Dirichlet -functions. Also, we study the independence property for the random variables arising from such a central limit theorem.
Révisé le : 2020-03-03
Accepté le : 2020-10-24
Publié le : 2021-01-08
Classification : 11M06
Mots clés : Dirichlet -functions, value distribution, central limit theorem, independence
@article{JTNB_2020__32_3_685_0, author = {Po-Han Hsu and Peng-Jie Wong}, title = {On Selberg's Central Limit Theorem for Dirichlet $L$-functions}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {685--710}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {3}, year = {2020}, doi = {10.5802/jtnb.1139}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2020__32_3_685_0/} }
Po-Han Hsu; Peng-Jie Wong. On Selberg’s Central Limit Theorem for Dirichlet $L$-functions. Journal de Théorie des Nombres de Bordeaux, Tome 32 (2020) no. 3, pp. 685-710. doi : 10.5802/jtnb.1139. https://jtnb.centre-mersenne.org/item/JTNB_2020__32_3_685_0/
[1] Probability and Measure, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1995
[2] Peak positions of strongly unimodal sequences, Trans. Am. Math. Soc., Volume 372 (2019) no. 10, p. 7087-7019 | Zbl 1426.05006
[3] Multiplicative Number Theory, Graduate Texts in Mathematics, Springer, 2000
[4] Modern Mathematical Statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1988
[5] The asymptotic expansion of a ratio of gamma functions, Pac. J. Math., Volume 1 (1951), pp. 133-142
[6] A proof of the generalized second-limit theorem in the theory of probability, Trans. Am. Math. Soc., Volume 33 (1931), pp. 533-543
[7] Special Functions and Their Applications, Dover Publications, 1972
[8] Lectures on Gaussian Processes, SpringerBriefs in Mathematics, Springer, 2012 | Zbl 1248.60002
[9] Multiplicative Number Theory. I. Classical Theory, Cambridge Studies in Advanced Mathematics, Volume 97, Cambridge University Press, 2007 | Zbl 1142.11001
[10] Problems in Analytic Number Theory, Graduate Texts in Mathematics, Volume 206, Springer, 2008
[11] Large deviations in Selberg’s central limit theorem (2011) (https://arxiv.org/abs/1108.5092)
[12] Selberg’s central limit theorem for , Enseign. Math., Volume 63 (2017) no. 1-2, pp. 1-19
[13] On an approximate functional equation for Dirichlet -series, Math. Ann., Volume 264 (1983) no. 2, pp. 137-145
[14] Contributions to the theory of the Riemann zeta-function, Arch. Math., Volume 48 (1946) no. 5, pp. 89-155 | Zbl 0061.08402
[15] Old and new conjectures and results about a class of Dirichlet series, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Universitá di Salerno, 1989, pp. 367-385 | Zbl 0772.00021