On Incidences of ϕ and σ in the Function Field Setting
Journal de Théorie des Nombres de Bordeaux, Tome 31 (2019) no. 2, pp. 403-415.

Erdős a conjecturé qu’il existe une infinité de nombres n et m tels que ϕ(n)=σ(m), où ϕ est l’indicatrice d’Euler et σ est la fonction somme de diviseurs. Cette conjecture a été prouvée en 2010 par Ford, Luca et Pomerance. De façon analogue, on se demande s’il existe une infinité de polynômes F et G sur un corps fini 𝔽 q tels que ϕ(F)=σ(G). On trouve que si q2 ou 3, c’est vrai seulement dans le cas trivial F=G=1. De plus, on donne une caractérisation des solutions dans les cas q=2 et 3. En particulier, on montre que si q=2 ou 3, on a ϕ(F)=σ(G) pour une infinité de polynômes.

Erdős first conjectured that infinitely often we have ϕ(n)=σ(m), where ϕ is the Euler totient function and σ is the sum of divisors function. This was proven true by Ford, Luca and Pomerance in 2010. We ask the analogous question of whether infinitely often we have ϕ(F)=σ(G) where F and G are polynomials over some finite field 𝔽 q . We find that when q2 or 3, then this can only trivially happen when F=G=1. Moreover, we give a complete characterisation of the solutions in the case q=2 or 3. In particular, we show that ϕ(F)=σ(G) infinitely often when q=2 or 3.

Reçu le : 2018-10-07
Accepté le : 2018-11-15
Publié le : 2019-10-29
DOI : https://doi.org/10.5802/jtnb.1088
Classification : 11N64
Mots clés: Function Fields, Euler Totient Function, Primitive Divisors
@article{JTNB_2019__31_2_403_0,
     author = {Patrick Meisner},
     title = {On Incidences of $\varphi $ and $\sigma $ in the Function Field Setting},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {31},
     number = {2},
     year = {2019},
     pages = {403-415},
     doi = {10.5802/jtnb.1088},
     language = {en},
     url = {jtnb.centre-mersenne.org/item/JTNB_2019__31_2_403_0/}
}
Patrick Meisner. On Incidences of $\varphi $ and $\sigma $ in the Function Field Setting. Journal de Théorie des Nombres de Bordeaux, Tome 31 (2019) no. 2, pp. 403-415. doi : 10.5802/jtnb.1088. https://jtnb.centre-mersenne.org/item/JTNB_2019__31_2_403_0/

[1] Emil Artin The orders of the linear groups, Commun. Pure Appl. Math., Volume 8 (1955), pp. 355-365 | Article | MR 70642 | Zbl 0065.01204

[2] A. S. Bang Taltheoretiske undersøgelser, Tidsskrift for mathematik, Volume 4 (1886), pp. 70-80

[3] Lior Bary-Soroker Hardy–Littlewood tuple conjecture over large finite fields, Int. Math. Res. Not., Volume 2014 (2014) no. 2, pp. 568-575 | Article | MR 3159081 | Zbl 1296.11165

[4] Andreas O. Bender; Paul Pollack On quantitative analogues of the Goldbach and twin prime conjectures over 𝔽 q [t] (2009) (https://arxiv.org/abs/0912.1702)

[5] Dan Carmon The autocorrelation of the Möbius function and Chowla’s conjecture for the rational function field in characteristic 2, Philos. Trans. A, R. Soc. Lond., Volume 373 (2015) no. 2040, 20140311, 14 pages | MR 3338117 | Zbl 1397.11158

[6] Pál Erdős Remarks on number theory II. Some problems on the σ function, Acta Arith., Volume 5 (1959), pp. 171-177 | Article | MR 107623 | Zbl 0092.04601

[7] Kevin Ford; Florian Luca; Carl Pomerance Common values of the arithmetic functions φ and σ, Bull. Lond. Math. Soc., Volume 42 (2010) no. 3, pp. 478-488 | Article | MR 2651943 | Zbl 1205.11010

[8] Kevin Ford; Paul Pollack On common values of ϕ(n) and σ(m). I, Acta Math. Hung., Volume 133 (2011) no. 3, pp. 251-271 | Article | Zbl 1265.11092

[9] Kevin Ford; Paul Pollack On common values of φ(n) and σ(m), II, Algebra Number Theory, Volume 6 (2012) no. 8, pp. 1669-1696 | Article | MR 3033524 | Zbl 1279.11093

[10] Karl Zsigmondy Zur theorie der Potenzreste, Monatsh. f. Math., Volume 3 (1892), pp. 265-284 | Article | MR 1546236 | Zbl 24.0176.02