Bihomogeneous forms in many variables
Journal de Théorie des Nombres de Bordeaux, Tome 26 (2014) no. 2, pp. 483-506.

Nous comptons les points entiers sur des variétés données par des équations bihomogènes en utilisant la méthode de Hardy–Littlewood. La principale nouveauté est l’utilisation de la structure des équations bihomogènes pour obtenir, de manière générique, des estimations asymptotiques pour moins de variables que ne le permette l’approche classique pour les variétés homogènes. Nous considérons aussi des fonctions de comptage où toutes les variables n’appartiennent pas nécessairement à des intervalles de même taille, ce qui se présente comme une question naturelle dans le cadre des variétés bihomogènes.

We count integer points on varieties given by bihomogeneous equations using the Hardy-Littlewood method. The main novelty lies in using the structure of bihomogeneous equations to obtain asymptotics in generically fewer variables than would be necessary in using the standard approach for homogeneous varieties. Also, we consider counting functions where not all the variables have to lie in intervals of the same size, which arises as a natural question in the setting of bihomogeneous varieties.

Reçu le : 2013-01-28
Accepté le : 2013-09-02
Publié le : 2015-03-09
DOI : https://doi.org/10.5802/jtnb.876
Classification : 11D45,  11D72,  11P55
@article{JTNB_2014__26_2_483_0,
     author = {Damaris Schindler},
     title = {Bihomogeneous forms in many variables},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {483--506},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {26},
     number = {2},
     year = {2014},
     doi = {10.5802/jtnb.876},
     mrnumber = {3320489},
     language = {en},
     url = {jtnb.centre-mersenne.org/item/JTNB_2014__26_2_483_0/}
}
Damaris Schindler. Bihomogeneous forms in many variables. Journal de Théorie des Nombres de Bordeaux, Tome 26 (2014) no. 2, pp. 483-506. doi : 10.5802/jtnb.876. https://jtnb.centre-mersenne.org/item/JTNB_2014__26_2_483_0/

[1] B. J. Birch, Forms in many variables. Proc. Roy. Soc. Ser. A 265, (1961), 245–263. | MR 150129 | Zbl 0103.03102

[2] H. Davenport, Cubic Forms in Thirty-Two Variables. Phil. Trans. R. Soc. Lond. A 251, (1959), 193–232. | MR 105394 | Zbl 0084.27202

[3] H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, (2005). With a foreword by R. C. Vaughan, D. R. Heath-Brown and D. E. Freeman, Edited and prepared for publication by T. D. Browning. | MR 2152164 | Zbl 1125.11018

[4] J. Harris, Algebraic Geometry, A First Course. Springer, (1993). | MR 1416564 | Zbl 0779.14001

[5] M. Robbiani, On the number of rational points of bounded height on smooth bilinear hypersurfaces in biprojective space. J. London Math. Soc. 63, (2001), 33–51. | MR 1801715 | Zbl 1020.11046

[6] W. M. Schmidt, Simultaneous rational zeros of quadratic forms. Seminar Delange-Pisot-Poitou 1981. Progress in Math. 22, (1982), 281–307. | MR 693325 | Zbl 0492.10017

[7] W. M. Schmidt, The density of integer points on homogeneous varieties. Acta Math. 154, 3-4, (1985), 243–296. | MR 781588 | Zbl 0561.10010

[8] C. V. Spencer, The Manin conjecture for x 0 y 0 +...+x s y s =0. J. Number Theory 129, 6, (2009), 1505–1521. | MR 2521490 | Zbl 1171.11054

[9] K. van Valckenborgh, Squareful numbers in hyperplanes. arXiv 1001.3296v3. | MR 2968632