Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis
Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 2, pp. 425-445.

En supposant que l’hypothèse de Riemann généralisée (HRG) soit vérifiée, nous montrons que les corps de nombres galoisiens de degré 3 qui sont euclidiens pour la norme sont précisément ceux dont le discriminant est l’un des entiers suivants :

Δ=72,92,132,192,312,372,432,612,672,1032,1092,1272,1572.

Une grande partie de la preuve consiste à établir le résultat plus général suivant : soit K un corps de nombres galoisien de degré premier impair et de conducteur f. Supposons que HRG soit vérifiée pour ζ K (s). Si

38(-1)2(logf)6loglogf<f,

alors K n’est pas euclidien pour la norme.

Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminant

Δ=72,92,132,192,312,372,432,612,672,1032,1092,1272,1572.

A large part of the proof is in establishing the following more general result: Let K be a Galois number field of odd prime degree and conductor f. Assume the GRH for ζ K (s). If

38(-1)2(logf)6loglogf<f,

then K is not norm-Euclidean.

DOI : 10.5802/jtnb.804
Classification : 11A05, 11R04, 11R16, 11R80, 11Y40
Mots clés : norm-Euclidean, Galois fields, cubic fields, GRH, Dirichlet characters
Kevin J. McGown 1

1 Department of Mathematics University of California, San Diego La Jolla, California, 92093, USA Current address : Department of Mathematics Oregon State University 368 Kidder Hall Corvallis, Oregon, 97331, USA
@article{JTNB_2012__24_2_425_0,
     author = {Kevin J. McGown},
     title = {Norm-Euclidean {Galois} fields and the {Generalized} {Riemann} {Hypothesis}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {425--445},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {24},
     number = {2},
     year = {2012},
     doi = {10.5802/jtnb.804},
     mrnumber = {2950700},
     zbl = {1272.11005},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.804/}
}
TY  - JOUR
AU  - Kevin J. McGown
TI  - Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2012
SP  - 425
EP  - 445
VL  - 24
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.804/
DO  - 10.5802/jtnb.804
LA  - en
ID  - JTNB_2012__24_2_425_0
ER  - 
%0 Journal Article
%A Kevin J. McGown
%T Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis
%J Journal de théorie des nombres de Bordeaux
%D 2012
%P 425-445
%V 24
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.804/
%R 10.5802/jtnb.804
%G en
%F JTNB_2012__24_2_425_0
Kevin J. McGown. Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis. Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 2, pp. 425-445. doi : 10.5802/jtnb.804. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.804/

[1] N. C. Ankeny, The least quadratic non residue. Ann. of Math. (2) 55 (1952), 65–72. | MR | Zbl

[2] E. Bach, Explicit bounds for primality testing and related problems. Math. Comp. 55 (1990), no. 191, 355–380. | MR | Zbl

[3] H. Davenport, Multiplicative number theory, third edition. Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000, Revised and with a preface by Hugh L. Montgomery. | MR | Zbl

[4] H. J. Godwin and J. R. Smith, On the Euclidean nature of four cyclic cubic fields. Math. Comp. 60 (1993), no. 201, 421–423. | MR | Zbl

[5] H. Heilbronn, On Euclid’s algorithm in cubic self-conjugate fields. Proc. Cambridge Philos. Soc. 46 (1950), 377–382. | MR | Zbl

[6] Y. Ihara, V. K. Murty, and M. Shimura, On the logarithmic derivatives of Dirichlet L-functions at s=1. Acta Arith. 137 (2009), no. 3, 253–276. | MR

[7] J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem. Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 409–464. | MR | Zbl

[8] E. Landau, Zur Theorie der Heckeschen Zetafunktionen, welche komplexen Charakteren entsprechen. Math. Z. 4 (1919), no. 1-2, 152–162. | MR

[9] F. Lemmermeyer, The Euclidean algorithm in algebraic number fields. Exposition. Math. 13 (1995), no. 5, 385–416. | MR | Zbl

[10] K. J. McGown, Norm-Euclidean cyclic fields of prime degree. Int. J. Number Theory (to appear). | MR

[11] H. L. Montgomery, Topics in multiplicative number theory. Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin, 1971. | MR | Zbl

[12] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, second edition. Springer-Verlag, Berlin, 1990. | MR | Zbl

[13] A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119–141. | Numdam | MR | Zbl

[14] G. Poitou, Minorations de discriminants (d’après A. M. Odlyzko). Séminaire Bourbaki, Vol. 1975/76 28ème année, Exp. No. 479, Springer, Berlin, 1977, pp. 136–153. Lecture Notes in Math., Vol. 567. | Numdam | MR | Zbl

[15] G. Poitou, Sur les petits discriminants. Séminaire Delange-Pisot-Poitou, 18e année: (1976/77), Théorie des nombres, Fasc. 1, Secrétariat Math., Paris, 1977, pp. Exp. No. 6, 18. | Numdam | MR | Zbl

[16] H. M. Stark, Some effective cases of the Brauer-Siegel theorem. Invent. Math. 23 (1974), 135–152. | MR | Zbl

[17] H. M. Stark, The analytic theory of algebraic numbers. Bull. Amer. Math. Soc. 81 (1975), no. 6, 961–972. | MR | Zbl

[18] A. Weil, Sur les “formules explicites” de la théorie des nombres premiers. Comm. Sém. Math. Univ. Lund (1952), 252–265. | MR | Zbl

[19] A. Weil, Sur les formules explicites de la théorie des nombres. Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 3–18. | MR | Zbl

Cité par Sources :