Sous GRH, nous présentons un algorithme qui, étant donné un nombre premier p, calcule l’ensemble des discriminants fondamentaux , tels que l’application de réduction, modulo un premier aux dessus de , des courbes elliptiques avec multiplication complexe par vers les courbes elliptiques supersingulières en caractéristique est surjective. Dans l’algorithme, nous déterminons d’abord une borne explicite telle que implique que l’application est nécessairement surjective et nous calculons ensuite explicitement les cas .
Assuming GRH, we present an algorithm which inputs a prime and outputs the set of fundamental discriminants such that the reduction map modulo a prime above from elliptic curves with CM by to supersingular elliptic curves in characteristic is surjective. In the algorithm we first determine an explicit constant so that implies that the map is necessarily surjective and then we compute explicitly the cases .
Publié le : 2010-03-22
DOI : https://doi.org/10.5802/jtnb.692
Classification : 11G05, 11E20, 11E45, 11Y35, 11Y70
Mots clés : Quaternion Algebra, Elliptic Curves, Maximal Orders, Half Integer Weight Modular Forms, Kohnen’s Plus Space, Shimura Lifts
@article{JTNB_2009__21_3_635_0, author = {Ben Kane}, title = {CM liftings of supersingular elliptic curves}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {635--663}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {3}, year = {2009}, doi = {10.5802/jtnb.692}, zbl = {1214.11142}, mrnumber = {2605537}, language = {en}, url = {jtnb.centre-mersenne.org/item/JTNB_2009__21_3_635_0/} }
Ben Kane. CM liftings of supersingular elliptic curves. Journal de Théorie des Nombres de Bordeaux, Tome 21 (2009) no. 3, pp. 635-663. doi : 10.5802/jtnb.692. https://jtnb.centre-mersenne.org/item/JTNB_2009__21_3_635_0/
[1] J. Cremona, Algorithms for elliptic curves. Cambridge Univ. Press, 1992. | MR 1201151 | Zbl 0758.14042
[2] P. Deligne, La conjecture de weil i. Inst. Hautes Études Sci. Publ. Math 43 (1974), 273–307. | Numdam | MR 340258 | Zbl 0287.14001
[3] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörpen. Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272. | MR 5125
[4] W. Duke, Hyperbolic distribution problems and half-integral weight maass forms. Invent. Math. 92 (1998), 73–90. | MR 931205 | Zbl 0628.10029
[5] W. Duke and R. Schulze-Pillot, Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids. Invent. Math. 99 (1990), no. 1, 49–57. | MR 1029390 | Zbl 0692.10020
[6] A. Earnest, J. Hsia, and D. Hung, Primitive representations by spinor genera of ternary quadratic forms. J. London Math. Soc. (2) 50 (1994), no. 2, 222–230. | MR 1291733 | Zbl 0805.11032
[7] N. Elkies, Supersingular primes for elliptic curves over real number fields. Compositio Mathematica 72 (1989), 165–172. | Numdam | MR 1030140 | Zbl 0708.14020
[8] N. Elkies, K. Ono, and T. Yang, Reduction of CM elliptic curves and modular function congruences. Int. Math. Res. Not. 44 (2005), 2695–2707. | MR 2181309 | Zbl 1166.11323
[9] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comp. (1985), 463–471. | MR 777278 | Zbl 0556.10022
[10] W. Gautschi, A computational procedure for incomplete Gamma functions. ACM Transactions on Mathematical Software 5 (1979), 466–481. | MR 547763 | Zbl 0429.65011
[11] B. Gross, Heights and the special values of -series. Number theory (Montreal, Que., 1985), CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115–187. | MR 894322 | Zbl 0623.10019
[12] B. Gross and D. Zagier, On singular moduli. J. Reine Angew. Math. 335 (1985), 191–220. | MR 772491 | Zbl 0545.10015
[13] T. Ibukiyama, On maximal order of division quaternion algebras over the rational number field with certain optimal embeddings. Nagoya Math J. 88 (1982), 181–195. | MR 683249 | Zbl 0473.12012
[14] H. Iwaniec, Fourier coefficients of modular forms of half-integral weight. Invent. Math. 87 (1987), 385–401. | MR 870736 | Zbl 0606.10017
[15] B. Jones, The arithmetic theory of quadratic forms. Carcus Monograph Series, no. 10, The Mathematical Association of America, Buffalo, Buffalo, NY, 1950. | MR 37321 | Zbl 0041.17505
[16] B. Kane, Representations of integers by ternary quadratic forms. preprint (2007).
[17] D. Kohel, Endomorphism rings of elliptic curves over finite fields. University of California, Berkeley, Ph.D. Thesis (1996), pp. 1–96.
[18] W. Kohnen, Newforms of half integral weight. J. reine angew. Math. 333 (1982), 32–72. | MR 660784 | Zbl 0475.10025
[19] W. Kohnen and D. Zagier, Values of -series of modular forms at the center of the critical strip. Invent. Math. 64 (1981), 175–198. | MR 629468 | Zbl 0468.10015
[20] J. Oesterlé, Nombres de classes des corps quadratiques imaginaires. Astérique 121-122 (1985), 309–323. | Numdam | MR 768967 | Zbl 0551.12003
[21] O. T. O’Meara, Introduction to quadratic forms. Classics in Mathematics, Springer-Verlag, Berlin, 2000, Reprint of the 1973 edition. | MR 1754311 | Zbl 1034.11003
[22] K. Ono, Web of modularity: Arithmetic of the coefficients of modular forms and -series. CBMS Regional Conference Series in Mathematics, no. 102, Amer. Math. Soc., Providence, RI, 2003. | MR 2020489 | Zbl 1119.11026
[23] K. Ono and K. Soundarajan, Ramanujan’s ternary quadratic form. Invent. Math. 130 (1997), 415–454. | MR 1483991 | Zbl 0930.11022
[24] A. Pizer, An algorithm for compute modular forms on . J. Algebra 64 (1980), no. 2, 340–390. | MR 579066 | Zbl 0433.10012
[25] R. Schulze-Pillot, Darstellungsmaße von Spinorgeschlechtern ternärer quadratischer Formen. J. Reine Angew. Math., 352 (1984), 114–132. | MR 758697 | Zbl 0533.10016
[26] G. Shimura, On modular forms of half integer weight. Ann. of Math. 97 (1973), 440–481. | MR 332663 | Zbl 0266.10022
[27] C. Siegel, Über die klassenzahl quadratischer zahlkorper. Acta Arith. 1 (1935), 83–86.
[28] J. Silverman, The arithmetic of elliptic curves. Springer-Verlag, New York, 1992, Corrected reprint of the 1986 original. | MR 1329092 | Zbl 0585.14026
[29] W. Stein, Explicit approaches to modular abelian varieties. Ph.D. thesis, University of California, Berkeley (2000), pp. 1–96.
[30] —, Modular forms, a computational approach. Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007, Appendix by P. Gunnells. | MR 2289048 | Zbl 1110.11015
[31] J. Sturm, On the congruence of modular forms. Number theory (New York, 1984–1985), Springer, Berlin, 1987, pp. 275–280. | MR 894516 | Zbl 0615.10035
[32] M.-F. Vignéras, Arithmétique des algèbres de quaternions. Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980. | MR 580949 | Zbl 0422.12008
[33] M. Watkins, Class numbers of imaginary quadratic fields. Math. Comp. 73 (2004), 907–938. | MR 2031415 | Zbl 1050.11095