On donne des estimations pour la moyenne quadratique de
où et se trouve dans un intervalle convenable. Pour un entier fixé, et le terme d’erreur pour la fonction sommatoire de la fonction des diviseurs , generée par .
We provide upper bounds for the mean square integral
where and lies in a suitable range. For a fixed integer, is the error term in the asymptotic formula for the summatory function of the divisor function , generated by .
@article{JTNB_2009__21_2_251_0, author = {Aleksandar Ivi\'c}, title = {On the mean square of the divisor function in short intervals}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {251--261}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {2}, year = {2009}, doi = {10.5802/jtnb.669}, zbl = {pre05620649}, mrnumber = {2541424}, language = {en}, url = {jtnb.centre-mersenne.org/item/JTNB_2009__21_2_251_0/} }
Aleksandar Ivić. On the mean square of the divisor function in short intervals. Journal de Théorie des Nombres de Bordeaux, Tome 21 (2009) no. 2, pp. 251-261. doi : 10.5802/jtnb.669. https://jtnb.centre-mersenne.org/item/JTNB_2009__21_2_251_0/
[1] G. Coppola, S. Salerno, On the symmetry of the divisor function in almost all short intervals. Acta Arith. 113(2004), 189–201. | EuDML 278625 | MR 2049565 | Zbl 1122.11062
[2] A. Ivić, The Riemann zeta-function. John Wiley & Sons, New York, 1985 (2nd ed., Dover, Mineola, N.Y., 2003). | MR 792089 | Zbl 0556.10026
[3] A. Ivić, On the divisor function and the Riemann zeta-function in short intervals. To appear in the Ramanujan Journal, see arXiv:0707.1756. | Zbl 1226.11086
[4] M. Jutila, On the divisor problem for short intervals. Ann. Univer. Turkuensis Ser. A I 186 (1984), 23–30. | MR 748516 | Zbl 0536.10032
[5] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions. J. Reine Angew. Math. 313 (1980), 161–170. | EuDML 152201 | MR 552470 | Zbl 0412.10030
[6] E.C. Titchmarsh, The theory of the Riemann zeta-function (2nd ed.). University Press, Oxford, 1986. | MR 882550 | Zbl 0601.10026
[7] W. Zhang, On the divisor problem. Kexue Tongbao 33 (1988), 1484–1485. | MR 969977