Soit un sous-groupe discret de tel que le quotient ait un volume fini. On associe à une représentation unitaire de dimension finie de la fonction zêta de Selberg . Dans cet article, on prouve le formalisme d’Artin pour cette fonction zêta de Selberg. Plus précisément, si est une extension de d’indice fini dans , et si est la représentation induite, alors . Dans la deuxième partie de l’article, on prouve par une méthode directe l’identité analogue pour la fonction de dispersion. Plus précisément, pour une certaine normalisation de la série d’Eisenstein.
Let be a finite-volume quotient of the upper-half space, where is a discrete subgroup. To a finite dimensional unitary representation of one associates the Selberg zeta function . In this paper we prove the Artin formalism for the Selberg zeta function. Namely, if is a finite index group extension of in , and is the induced representation, then . In the second part of the paper we prove by a direct method the analogous identity for the scattering function, namely , for an appropriate normalization of the Eisenstein series.
DOI : https://doi.org/10.5802/jtnb.657
Mots clés : Artin Formalism, Selberg Zeta function, Kleinian groups, Fuchsian groups hyperbolic 3-manifolds, scattering matrix, Eisenstein series.
@article{JTNB_2009__21_1_59_0, author = {Eliot Brenner and Florin Spinu}, title = {Artin formalism for Selberg zeta functions of co-finite Kleinian groups}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {59--75}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {1}, year = {2009}, doi = {10.5802/jtnb.657}, zbl = {pre05620668}, mrnumber = {2537703}, language = {en}, url = {jtnb.centre-mersenne.org/item/JTNB_2009__21_1_59_0/} }
Eliot Brenner; Florin Spinu. Artin formalism for Selberg zeta functions of co-finite Kleinian groups. Journal de Théorie des Nombres de Bordeaux, Tome 21 (2009) no. 1, pp. 59-75. doi : 10.5802/jtnb.657. https://jtnb.centre-mersenne.org/item/JTNB_2009__21_1_59_0/
[1] E. Brenner, F. Spinu, Artin Formalism, for Kleinian Groups, via Heat Kernel Methods. Submitted to Serge Lang Memorial Volume.
[2] P. Cohen, P. Sarnak, Lecture notes on Selberg trace formula (unpublished).
[3] J. Elstrodt, F. Grunewald, J. Mennicke, Groups acting on hyperbolic space. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. | MR 1483315 | Zbl 0888.11001
[4] J. Friedman, The Selberg trace formula and Selberg-zeta function for cofinite Kleinian groups with finite-dimensional unitary representations. Math. Zeit. 50 (2005), No.4. | MR 2180383 | Zbl 1135.11026
[5] J. Friedman, Analogues of the Artin factorization formula for the automorphic scattering matrix and Selberg zeta-function associated to a Kleinian group. Arxiv:math/0702030. | MR 2415021
[6] R. Gangolli, G. Warner, Zeta functions of Selberg’s type for some noncompact quotients of symmetric spaces of rank one. Nagoya Math. J. 78 (1980), 1–44. | MR 571435
[7] J. Jorgenson, S. Lang, Artin formalism and heat kernels. Jour. Reine. Angew. Math. 447 (1994), 165–280. | MR 1263173 | Zbl 0789.11055
[8] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47–87. | MR 88511 | Zbl 0072.08201
[9] A.B. Venkov, The Artin Takagi formula for Selberg’s zeta-function and the Roelcke conjecture. Soviet Math. Dokl. 20 (1979), No.4, 745–748. | Zbl 0432.30036
[10] A. B. Venkov, Spectral Theory of Automorphic Functions. Proceedings of the Steklov Institute of Mathematics 4, 1982. | MR 692019 | Zbl 0501.10029
[11] A. B. Venkov, P. Zograf, Analogues of Artin’s factorization in the spectral theory of automorphic functions. Math. USSR Izvestiya 2 (1983), No. 3, 435–443. | Zbl 0527.10020