On the distribution of Hawkins’ random “primes”
Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 3, pp. 799-809.

Hawkins a défini une version probabiliste du crible d’Ératosthène et étudié la suite des nombres “premiers” aléatoires (p k ) k1 ainsi créés. Au moyen de diverses techniques probabilistes, de nombreux auteurs ont ensuite obtenu des résultats très fins sur ces “premiers”, souvent en accord avec des théorèmes ou conjectures classiques sur les nombres premiers usuels. Dans ce papier, on prouve que le nombre d’entiers kn tel que p k+α -p k =α est presque sûrement équivalent à n/log(n) α , pour tout entier α1 fixé. C’est un cas particulier d’un travail récent de Bui and Keating (exprimé autrement) mais notre méthode est différente et fournit un terme d’erreur. On montre également que le nombre d’entiers kn tel que p k a+b est presque sûrement équivalent à n/a, pour tous entiers a1 et 0ba-1 fixés, ce qui peut être vu comme un analogue du théorème de Dirichlet.

Hawkins introduced a probabilistic version of Erathosthenes’ sieve and studied the associated sequence of random “primes” (p k ) k1 . Using various probabilistic techniques, many authors have obtained sharp results concerning these random “primes”, which are often in agreement with certain classical theorems or conjectures for prime numbers. In this paper, we prove that the number of integers kn such that p k+α -p k =α is almost surely equivalent to n/log(n) α , for a given fixed integer α1. This is a particular case of a recent result of Bui and Keating (differently formulated) but our method is different and enables us to provide an error term. We also prove that the number of integers kn such that p k a+b is almost surely equivalent to n/a, for given fixed integers a1 and 0ba-1, which is an analogue of Dirichlet’s theorem.

DOI : 10.5802/jtnb.651
Tanguy Rivoal 1

1 Institut Fourier, CNRS UMR 5582, Université Grenoble 1, 100 rue des Maths, BP 74, 38402 Saint-Martin d’Hères cedex, France.
@article{JTNB_2008__20_3_799_0,
     author = {Tanguy Rivoal},
     title = {On the distribution of {Hawkins{\textquoteright}~random} {\textquotedblleft}primes{\textquotedblright}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {799--809},
     publisher = {Universit\'e Bordeaux 1},
     volume = {20},
     number = {3},
     year = {2008},
     doi = {10.5802/jtnb.651},
     mrnumber = {2523318},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.651/}
}
TY  - JOUR
AU  - Tanguy Rivoal
TI  - On the distribution of Hawkins’ random “primes”
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2008
SP  - 799
EP  - 809
VL  - 20
IS  - 3
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.651/
DO  - 10.5802/jtnb.651
LA  - en
ID  - JTNB_2008__20_3_799_0
ER  - 
%0 Journal Article
%A Tanguy Rivoal
%T On the distribution of Hawkins’ random “primes”
%J Journal de théorie des nombres de Bordeaux
%D 2008
%P 799-809
%V 20
%N 3
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.651/
%R 10.5802/jtnb.651
%G en
%F JTNB_2008__20_3_799_0
Tanguy Rivoal. On the distribution of Hawkins’ random “primes”. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 3, pp. 799-809. doi : 10.5802/jtnb.651. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.651/

[1] H. M. Bui, J. P. Keating, On twin primes associated with the Hawkins random sieve. J. Number Theory 119.2 (2006), 284–296. | MR | Zbl

[2] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 2 (1936), 23–46. | Zbl

[3] L. Dickson, A new extension of Dirichlet’s theorem on prime numbers. Messenger of Math. 33 (1904), 155–161.

[4] G. H. Hardy, J. E. Littlewood, Some Problems of ’Partitio Numerorum.’ III. On the Expression of a Number as a Sum of Primes. Acta Math. 44 (1923), 1–70. | MR

[5] D. Hawkins, The random sieve. Math. Mag. 31 (1957/1958), 1–3. | MR | Zbl

[6] D. Hawkins, Random sieves. II. J. Number Theory 6 (1974), 192–200. | MR | Zbl

[7] C. C. Heyde, A loglog improvement to the Riemann hypothesis for the Hawkins random sieve. Ann. Probab. 6 (1978), no. 5, 870–875. | MR | Zbl

[8] C. C. Heyde, On asymptotic behavior for the Hawkins random sieve. Proc. AMS 56 (1976), 277–280. | MR | Zbl

[9] M. Loève, Probability theory, Third edition. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. | MR | Zbl

[10] J. D. Lorch, A generalized Hawkins sieve and prime k-tuplets. Rocky Mountain J. Math. 37 (2007), no. 2, 533–550. | MR

[11] W. Neudecker, On twin “primes” and gaps between successive “primes” for the Hawkins random sieve. Math. Proc. Cambridge Philos. Soc. 77 (1975), 365–367. | MR | Zbl

[12] W. Neudecker, D. Williams, The ‘Riemann hypothesis’ for the Hawkins random sieve. Compositio Math. 29 (1974), 197–200. | Numdam | MR | Zbl

[13] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Deuxième édition. Cours Spécialisés, Société Mathématique de France, Paris, 1995. | MR | Zbl

[14] M. C. Wunderlich, A probabilistic setting for prime number theory. Acta Arith. 26 (1974), 59–81. | MR | Zbl

[15] M. C. Wunderlich, The prime number theorem for random sequences. J. Number Theory 8 (1976), no. 4, 369–371. | MR | Zbl

Cité par Sources :