Dans cet article nous prolongeons la construction de Champernowne de nombres normaux dans la base pour le cas , et obtenons une construction explicite du point générique de la transformation de l’ensemble par déplacement. Nous prouvons que l’intersection de la configuration de réseau considérée avec une droite arbitraire est une suite normale dans la base .
In this paper we extend Champernowne’s construction of normal numbers in base to the case and obtain an explicit construction of the generic point of the shift transformation of the set . We prove that the intersection of the considered lattice configuration with an arbitrary line is a normal sequence in base .
@article{JTNB_2005__17_3_825_0, author = {Mordechay B. Levin and Meir Smorodinsky}, title = {On linear normal lattices configurations}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {825--858}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {3}, year = {2005}, doi = {10.5802/jtnb.523}, zbl = {05016590}, mrnumber = {2212128}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.523/} }
Mordechay B. Levin; Meir Smorodinsky. On linear normal lattices configurations. Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 3, pp. 825-858. doi : 10.5802/jtnb.523. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.523/
[1] R. Adler, M. Keane, M. Smorodinsky, A construction of a normal number for the continued fraction transformation. Journal of Number Theory 13 (1981), 95–105. | MR 602450 | Zbl 0448.10050
[2] D. J. Champernowne, The construction of decimals normal in the scale of ten. J. London Math. Soc. 8 (1933), 254–260. | Zbl 0007.33701
[3] J. Cigler, Asymptotische Verteilung reeller Zahlen mod 1. Monatsh. Math. 64 (1960), 201–225. | MR 121358 | Zbl 0111.25301
[4] M. Drmota, R. F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Math, vol. 1651, Springer, 1997. | MR 1470456 | Zbl 0877.11043
[5] T. Kamae, Subsequences of normal sequences. Israel J. Math. 16 (1973), 121–149. | MR 338321 | Zbl 0272.28012
[6] N. M. Korobov, Exponential Sums and their Applications. Kluwer Academic Publishers, Dordrecht, 1992. | MR 1162539 | Zbl 0754.11022
[7] L. Kuipers , H. Niederreiter, Uniform Distribution of Sequences. Pure and Applied Mathematics, Wiley–Interscience, New York, 1974. | MR 419394 | Zbl 0281.10001
[8] P. Kirschenhofer, R.F. Tichy, On uniform distribution of double sequences. Manuscripta Math. 35 (1981), 195–207. | MR 627933 | Zbl 0478.10036
[9] M. B. Levin, On normal lattice configurations and simultaneously normal numbers. J. Théor. Nombres Bordeaux 13 (2001), 483–527. | Numdam | MR 1879670 | Zbl 0999.11039
[10] M. B. Levin, Discrepancy estimate of completely uniform distributed double sequences. In preparation.
[11] M. B. Levin, M. Smorodinsky, A generalisation of the Davenport–Erdös construction of normal numbers. Colloq. Math. 84/85 (2000), 431–441. | MR 1784206 | Zbl 1014.11046
[12] M. B. Levin, M. Smorodinsky, Explicit construction of normal lattice configurations. Colloq. Math. 102 (2005), 33–47. | MR 2150267 | Zbl 1080.11057
[13] M. B. Levin, M. Smorodinsky, On polynomial normal lattice configurations. Monatsh. Math. (2005) | MR 2216557 | Zbl 05036002
[14] A. G. Postnikov, Arithmetic modeling of random processes. Proc. Steklov. Inst. Math. 57 (1960), 84 pp. | MR 148639 | Zbl 0106.12101
[15] M. Smorodinsky, B. Weiss, Normal sequences for Markov shifts and intrinsically ergodic subshifts. Israel J. Math. 59 (1987), 225–233. | MR 920084 | Zbl 0643.10041
[16] B. Weiss, Normal sequences as collectives. Proc. Symp. on Topological Dynamics and Ergodic Theory, Univ. of Kentucky, 1971.