On a generalization of the Selection Theorem of Mahler
Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 237-269.

On montre que l’ensemble 𝒰𝒟 r des ensembles de points de n ,n1, qui ont la propriété que leur distance interpoint minimale est plus grande qu’une constante strictement positive r>0 donnée est muni d’une métrique pour lequel il est compact et tel que la métrique de Hausdorff sur le sous-ensemble 𝒰𝒟 r,f 𝒰𝒟 r des ensembles de points finis est compatible avec la restriction de cette topologie à 𝒰𝒟 r,f . Nous montrons que ses ensembles de Delaunay (Delone) de constantes données dans n ,n1, sont compacts. Trois (classes de) métriques, dont l’une de nature cristallographique, nécessitant un point base dans l’espace ambiant, sont données avec leurs propriétés, pour lesquelles nous montrons qu’elles sont topologiquement équivalentes. On prouve que le processus d’enlèvement de points est uniformément continu à l’infini. Nous montrons que ce Théorème de compacité implique le Théorème classique de Sélection de Mahler. Nous discutons la généralisation de ce résultat à des espaces ambiants autres que n . L’espace 𝒰𝒟 r est l’espace des empilements de sphères égales de rayon r/2.

The set 𝒰𝒟 r of point sets of n ,n1, having the property that their minimal interpoint distance is greater than a given strictly positive constant r>0 is shown to be equippable by a metric for which it is a compact topological space and such that the Hausdorff metric on the subset 𝒰𝒟 r,f 𝒰𝒟 r of the finite point sets is compatible with the restriction of this topology to 𝒰𝒟 r,f . We show that its subsets of Delone sets of given constants in n ,n1, are compact. Three (classes of) metrics, whose one of crystallographic nature, requiring a base point in the ambient space, are given with their corresponding properties, for which we show topological equivalence. The point-removal process is proved to be uniformly continuous at infinity. We prove that this compactness Theorem implies the classical Selection Theorem of Mahler. We discuss generalizations of this result to ambient spaces other than n . The space 𝒰𝒟 r is the space of equal sphere packings of radius r/2.

@article{JTNB_2005__17_1_237_0,
     author = {Gilbert Muraz and Jean-Louis Verger-Gaugry},
     title = {On a generalization of the Selection Theorem of Mahler},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {237--269},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {1},
     year = {2005},
     doi = {10.5802/jtnb.489},
     zbl = {1081.11048},
     mrnumber = {2152223},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.489/}
}
Gilbert Muraz; Jean-Louis Verger-Gaugry. On a generalization of the Selection Theorem of Mahler. Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 237-269. doi : 10.5802/jtnb.489. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.489/

[B] N. Bourbaki, General Topology. Chapter IX, Addison-Wesley, Reading, 1966.

[BL] M. Baake, D. Lenz, Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra. Ergod. Th. & Dynam. Sys. 24 (6) (2004), 1867–1893. | MR 2106769 | Zbl 02144185

[Bo] L. Bowen, On the existence of completely saturated packings and completely reduced coverings. Geom. Dedicata 98 (2003), 211–226. | MR 1988430 | Zbl 1028.52009

[Ca] J.W.S. Cassels, An introduction to the Geometry of Numbers. Springer Verlag, 1959. | Zbl 0086.26203

[Ch] C. Chabauty, Limite d’Ensembles et Géométrie des Nombres. Bull. Soc. Math. Fr. 78 (1950), 143–151. | EuDML 86837 | Numdam | MR 38983 | Zbl 0039.04101

[CS] J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups. Springer-Verlag, Berlin, 1999, third edition. | MR 1662447 | Zbl 0915.52003

[Dw] S. Dworkin, Spectral Theory and X-Ray Diffraction. J. Math. Phys. 34 (7) (1993), 2965–2967. | MR 1224190 | Zbl 0808.47052

[GL] P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers. North-Holland, 1987. | MR 893813 | Zbl 0611.10017

[Go] J.-B. Gouéré, Quasicrystals and almost-periodicity. Comm. Math. Phys. (2005), accepted. | MR 2135448 | Zbl 1081.52020

[Gr] E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985. | MR 803155 | Zbl 0574.10045

[Groe] H. Groemer, Continuity properties of Voronoi domains. Monatsh. Math. 75 (1971), 423–431. | MR 302565 | Zbl 0229.10012

[GVG] J.-P. Gazeau, J.-L. Verger-Gaugry, Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théorie Nombres Bordeaux 16 (2004), 125–149. | EuDML 249261 | Numdam | MR 2145576 | Zbl 1075.11007

[Ha] T.C. Hales, Sphere Packings I. Discrete Comput. Geom. 17 (1997), 1–51. | MR 1418278 | Zbl 0883.52012

[Ke] J.L. Kelley, Hyperspaces of a Continuum. Trans. Amer. Math. Soc. 52 (1942), 22–36. | MR 6505 | Zbl 0061.40107

[La] J.C. Lagarias, Bounds for Local Density of Sphere Packings and the Kepler Conjecture. Discrete Comput. Geom. 27 (2002), 165–193. | MR 1880936 | Zbl 1005.52011

[Ma] K. Mahler, On Lattice Points in n-dimensional Star Bodies.I. Existence Theorems. Proc. Roy. Soc. London A 187 (1946), 151–187. | MR 17753 | Zbl 0060.11710

[Mf] R.B. Mcfeat, Geometry of numbers in adele spaces. Dissertationes Math. (Rozprawy mat.), Warsawa, 88 (1971), 1–49. | MR 318104 | Zbl 0229.10014

[Mi] E. Michael, Topologies on Spaces of Subsets. Trans. Amer. Math. Soc. 71 (1951), 152–182. | MR 42109 | Zbl 0043.37902

[Mo] R.V. Moody, Meyer sets and their duals. In The Mathematics of Long-Range Aperiodic Order, Ed. by R.V. Moody, Kluwer Academic Publishers (1997), 403–441. | MR 1460032 | Zbl 0880.43008

[MS] A.M. Macbeath, S. Swierczkowski, Limits of lattices in a compactly generated group. Canad. J. Math. 12 (1960), 427-437. | MR 116068 | Zbl 0097.03301

[Mu] D. Mumford, A Remark on Mahler’s Compactness Theorem. Proc. of the Amer. Math. Soc. 28 (1971), 289–294. | MR 276410 | Zbl 0215.23202

[MVG1] G. Muraz, J.-L. Verger-Gaugry, On continuity properties of Voronoi domains and a theorem of Groemer. Preprint (2004).

[MVG] G. Muraz, J.-L. Verger-Gaugry, On lower bounds of the density of Delone sets and holes in sequences of sphere packings. Exp. Math. 14:1 (2005), 49–59. | MR 2146518 | Zbl 05122033

[Ro] C.A. Rogers, Packing and Covering. Cambridge University Press, 1964. | MR 172183 | Zbl 0176.51401

[Rob] E. Arthur Robinson, Jr., The Dynamical Theory of Tilings and Quasicrystallography. In Ergodic Theory of d -actions, (Warwick 1993-4), London Math. Soc. Lec. Note Ser. 228, Cambridge Univ. Press, Cambridge, 451–473. | MR 1411233 | Zbl 0853.58093

[RSD] K. Rogers, H.P.F. Swinnerton-Dyer, The Geometry of Numbers over algebraic number fields. Trans. Amer. Math. Soc. 88 (1958), 227–242. | MR 95160 | Zbl 0083.26206

[RW] C. Radin, M. Wolff, Space Tilings and Local Isomorphism. Geom. Dedicata 42 (1992), 355–360. | MR 1164542 | Zbl 0752.52014

[So] B. Solomyak, Spectrum of Dynamical Systems Arising from Delone Sets. In Quasicrystals and Discrete Geometry, Fields Institute Monographs, J. Patera Ed., 10 (1998), AMS, 265–275. | MR 1636783 | Zbl 0988.37010

[St] K.B. Stolarsky, Sums of distances between points on a sphere. Proc. Amer. Math. Soc. 35 (1972), 547–549. | MR 303418 | Zbl 0255.52004

[We] A. Weil, Sur les Espaces à Structure Uniforme et sur la Topologie Générale. Hermann, Paris, 1938. | Zbl 0019.18604