A monogenic Hasse-Arf theorem
Journal de Théorie des Nombres de Bordeaux, Tome 16 (2004) no. 2, pp. 373-375.

On étend le théorème de Hasse–Arf de la classe des extensions résiduellement séparables des anneaux de valuation discrète complets à la classe des extensions monogènes.

I extend the Hasse–Arf theorem from residually separable extensions of complete discrete valuation rings to monogenic extensions.

@article{JTNB_2004__16_2_373_0,
     author = {James Borger},
     title = {A monogenic Hasse-Arf theorem},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {373--375},
     publisher = {Universit\'e Bordeaux 1},
     volume = {16},
     number = {2},
     year = {2004},
     doi = {10.5802/jtnb.451},
     zbl = {1077.13011},
     mrnumber = {2143559},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.451/}
}
James Borger. A monogenic Hasse-Arf theorem. Journal de Théorie des Nombres de Bordeaux, Tome 16 (2004) no. 2, pp. 373-375. doi : 10.5802/jtnb.451. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.451/

[1] K. Kato, Swan conductors for characters of degree one in the imperfect residue field case. Algebraic K-theory and algebraic number theory, ed. M. Stein and R. K. Dennis, Contemp. Math. 83, Amer. Math. Soc., Providence, 1989, 101–131. | MR 991978 | Zbl 0716.12006

[2] S. Matsuda, On the Swan conductor in positive characteristic. Amer. J. Math. 119 (1997), no. 4, 705–739. | MR 1465067 | Zbl 0928.14017

[3] J-P. Serre, Corps locaux. Deuxième édition. Hermann, Paris, 1968. | MR 354618 | Zbl 0137.02601

[4] B. de Smit, The Different and Differentials of Local Fields with Imperfect Residue Fields. Proc. Edin. Math. Soc. 40 (1997), 353–365. | MR 1454030 | Zbl 0874.11075

[5] L. Spriano. Thesis, Université de Bordeaux, 1999.