Relations between jacobians of modular curves of level p 2
Journal de Théorie des Nombres de Bordeaux, Tome 16 (2004) no. 1, pp. 95-106.

Nous établissons une relation entre les représentations induites sur le groupe GL 2 (/p 2 ) qui implique une relation entre les jacobiennes des certaines courbes modulaires de niveaux p 2 . La motivation de la construction de cette relation est la détermination de l’applicabilité de la méthode de Mazur à la courbe modulaire associée au normalisateur d’un subgroupe Cartan non-déployé de GL 2 (/p 2 ).

We derive a relation between induced representations on the group GL 2 (/p 2 ) which implies a relation between the jacobians of certain modular curves of level p 2 . The motivation for the construction of this relation is the determination of the applicability of Mazur’s method to the modular curve associated to the normalizer of a non-split Cartan subgroup of GL 2 (/p 2 ).

@article{JTNB_2004__16_1_95_0,
     author = {Imin Chen and Bart De Smit and Martin Grabitz},
     title = {Relations between jacobians of modular curves of level $p^2$},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {95--106},
     publisher = {Universit\'e Bordeaux 1},
     volume = {16},
     number = {1},
     year = {2004},
     doi = {10.5802/jtnb.435},
     mrnumber = {2145574},
     zbl = {02184633},
     language = {en},
     url = {jtnb.centre-mersenne.org/item/JTNB_2004__16_1_95_0/}
}
Imin Chen; Bart De Smit; Martin Grabitz. Relations between jacobians of modular curves of level $p^2$. Journal de Théorie des Nombres de Bordeaux, Tome 16 (2004) no. 1, pp. 95-106. doi : 10.5802/jtnb.435. https://jtnb.centre-mersenne.org/item/JTNB_2004__16_1_95_0/

[1] I. Chen, Jacobians of a certain class of modular curves of level p n . Provisionally accepted by the Comptes Rendus de l’Academie des Sciences - Mathematics, 30 January 2004.

[2] B. de Smit and S. Edixhoven, Sur un résultat d’Imin Chen. Math. Res. Lett. 7 (2–3) (2000), 147–153. | MR 1764312 | Zbl 0968.14024

[3] N. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves. Annals of Mathematics Studies 108. Princeton University Press, 1985. | MR 772569 | Zbl 0576.14026

[4] B. Mazur, Rational isogenies of prime degree. Inventiones mathematicae 44 (1978), 129–162. | MR 482230 | Zbl 0386.14009

[5] D. Mumford, Abelian varieties. Tata Institute of Fundamental Research Studies in Mathemaitcs 5. Oxford University Press, London, 1970. | MR 282985 | Zbl 0223.14022

[6] J.P. Murre, On contravariant functors from the category of preschemes over a field into the category of abelian groups. Publ. Math. IHES 23 (1964), 5–43. | Numdam | MR 206011 | Zbl 0142.18402

[7] F. Oort, Sur le schéma de Picard. Bull. Soc. Math. Fr. 90 (1962), 1–14. | Numdam | MR 138627 | Zbl 0123.13901

[8] J.P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Inventiones Mathematicae 15 (1972), 259–331. | MR 387283 | Zbl 0235.14012