
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

MARTIN EPKENHANS
On the annihilating ideal for trace forms
Journal de Théorie des Nombres de Bordeaux, tome 15, no 1 (2003),
p. 115-124
<http://www.numdam.org/item?id=JTNB_2003__15_1_115_0>

© Université Bordeaux 1, 2003, tous droits réservés.

L’accès aux archives de la revue « Journal de Théorie des Nombres
de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=JTNB_2003__15_1_115_0
http://jtnb.cedram.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


115-

On the annihilating ideal for trace forms

par MARTIN EPKENHANS

RÉSUMÉ. Npus donnons plusieurs exemples de familles de formes
trace dont l’idéal annulateur dans Z[X] est principal. Nous mon-
trons aussi qu’en général, cet idéal n’est pas principal.

ABSTRACT. We give several examples of classes of trace forms for
which the ideal of annihilating polynomials is principal. We prove,
that in general, the annihilating ideal is not a principal ideal.

1. Introduction

My talk given at the 20th Journees Arithmétiques at Limoges in 1997
concludes with a question on the injectivity of a certain map defined in
the context of Burnside rings and trace forms. Now we are able to give
an affirmative answer. Theorem 6 enables us to reduce questions on trace
forms to corresponding questions of trace forms of 2-groups.

Let K be a field of characteristic different from 2. Since the Witt ring
W(K) over K is an integral ring we may consider polynomials in Z[X]
evaluated at an element 0 of W(K). We say a polynomial p(X) E Z[X]
annihilates 0 = 0 in W (K).
Definition 1. Let M be any class of quadratic forms. Then the annihilat-
ing ideal 1M of M is defined to be

During the last 15 years several examples of annihilating polynomials of
quadratic forms have appeared in the literature. Let us first recall some
of these results and present them in the context of annihilating ideals.
D. Lewis [11] gives an annihilating polynomial for quadratic forms of di-
mension n.

Theorem 1 (Lewis). Let Qn be the class of all quadratic forms of dimen-
sion n. Then 7~~ is a principal ideal generated by the Lewis polynomial
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As usual, (a) = aR denotes the principal ideal generated by the element
a

Example 1 e Let 1°~ be the class of all n-fold Pfister forms. Then Ipn =
(X2 - 2-X).
Now let us recall the definition of the trace form. Let A be a finite

dimensional étale K -algebra. With it we associate the quadratic form

which is called the trace form of A/K. From some unpublished result of
P. E. Conner [2] we get the following theorem.

Theorem 2 (Conner). Let Tn be the class of trace forms of all separable
field extensions of degree n of fields of characteristic 54 2.

In a certain sense, the result of P.E. Conner has been improved first by
P. Beaulieu and T. Palfrey [1] and later on by D. Lewis and S. McGarraghy
[12]. Consider a separable field extension L/K of degree n and let N/ K be
a normal closure of L/K. Let f (X) E K[X] be the minimal polynomial of
a primitive element a of L/K. Then Beaulieu and Palfrey introduced the
notion of the Galois number of a polynomial f (X). This number is defined
to be the smallest number gf such that any gf roots of f (X) generate a
splitting field of f (X). In a group theoretical context the Galois number
of a G-set is defined to be the smallest natural number g such that any
group element (j E G with 9 fixed points acts as the identity. This number
is also called the minimal degree of a permutation representation. See [9]
for the determination of Galois numbers of doubly transitive groups. Now
the polynomial of Beaulieu and Palfrey is defined to be

Theorem 3 (Beaulieu-Palfrey). The polynomials has the property
that B f(~) = 0 E W (K), where 0 is isometric to the trace form of the field
extensions given by the separable and irreducible polynomials f (X) E K[X].

Denote the Galois group of N/K by G(N/K). Then the action of

G(N/K) on the left cosets of G(NIK)IG(NIL) defines a G-set. For any
G-set S of cardinality and any subgroup U  G let invu(S) := #{s E
S I sa = s for all Q E U} be the number of fixed points of the restricted
action. Set inv(S) := I U  G}. The definition of the following
polynomial is due to Lewis and McGarraghy (see [12, corollary 3.5]). For
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any S set

Now set

Theorem 4 (Lewis-McGarraghy). Let L/K be a finite and separable field
extension and let PG,s(X) be defined as above. Then PG,s(X) annihilates
the trace form of L/K.

Note, that the result above can be generalized to trace forms of étale
algebras. Using Springer’s theorem on the lifting of quadratic forms ac-
cording to odd degree extensions, we get annihilating polynomials of lower
degree (see [8, Theorem 2.10]).
Now we come to the definition of the class of quadratic forms we like to

discuss in this paper.

Definition 2. Let G be a finite group and let H  G be a subgroup with
n,EGo,Hu-1 = 1. Then the class M(G, H) consists of those quadratic
forms 0 such that

(1) there exists an irreducible and separable polynomial f (X) E K[X]
with Galois group Gal(f) isomorphic to G;

(2) the action of Gal(f) on the roots of f (X) and the action of G on the
left cosets G/H are equivalent;

(3) ~ and the trace form  (K[X]/(j(X)))/ K &#x3E; are isometric.

Note, that the condition on H guarantees, that G acts faithfully on
G/H. The work of Lewis [11] and Conner [2] give annihilating polynomials
for quadratic forms, resp. trace forms of dimension n. To finish the de-
termination of the annihilating ideal, we have to consider signatures. The
zeros of resp. Cn(X) are exactly those integers, which occur as
signature values of quadratic forms in resp. T~,.

Definition 3. Let M be a class of quadratic forms. Then the set of signa-
tures of M is denoted

If sign(M) is finite, the signature polynomial of M is given by

Since the signature is a ring homomorphism we get
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Proposition 1. Let M be a class of quadratic forms. If sign(M) is a finite
set, then

Othermise, we get 1M = (0).
The signature of a trace form  L/K &#x3E; equals the number of real em-

beddings of L into JR, which is the number of real roots of a polynomial
f (X) with L - K[X]/(f(X)) (see [13]). This observation gives rise to the
definition of a signature in a group theoretical setting.

Definition 4. Let S be a finite G-set and Q E G with Q2 = 1. Then

is called the signature of ,S according to a.

is the set of signatures of S.

Observe, that = From proposition 3 in [6] we con-
clude

Proposition 2. Let G be a finite group and let H be a subgroups of G with
n(1EGaHa-1 = 1. Then

2. Burnside rings
The proofs of Conner, Beaulieu-Palfrey and Lewis-McGarraghy are based

on certain identities in the Burnside ring B(G) of G and translated into
identities in the Witt ring by applying a homomorphism given by Dress [5]
(see also [7, proposition 3]).
Let B(G) denote the Burnside ring of G-sets (for more details see [4, chapter
11 §80]). Let XH denote the G-set given by the action of G on the set of
left cosets G/H. Let S = S(G) be a full set of nonconjugate subgroups of
G. By corollary 80.6 in [4]

For any a E G,O’2 = 1, the definition of signatures given in definition 4
gives rise to a signature homomorphism

Let L(G) := be the kernel of the total signature ho-
momorphism. For any Galois extension N/K with Galois group G(N/K)
isomorphic to G there is a ring homomorphism hN~K : G - W(K). Let

T(G) := nker(hN/K) denote the trace ideal of G (see [6],[7],[8] for more de-
tails). Here N/K runs over all Galois extensions of fields of characteristic
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~ 2 with Galois group G(N/K) - G. Then T(G) C L(G). Theorem 16 in
[7] states

Theorem 5. Let G be a finite group. Then L(G)/T(G) is ca finite 2-group.

and the only torsions in B(G)/T(G) are 2-torsions.

Together with proposition 1 we conclude

Corollary 1. Let G be a finite groups and let H be a subgroup with

Then there is an integer l E No such that

We can choose 21 to be the exponent of the finite abelian. 2-group L(G)/T(G).
Let (a : b) := {x E R ~ xb C a~ be the ideal quotient of the ideals a, b in

the ring R. Then

Since IM(G,H) contains monic polynomials, we get

Corollary 2. IM(G,H) is a principal ideals if and only if

We introduce some more notation. For any subgroup H of G let res~ :
B(G) --1- B(H) denote the restriction homomorphism (see ~7~). Let
 a1,... , an &#x3E; denote the diagonal matrix with diagonal entries a1,... , an.
For n E N and a matrix A denote the n-fold orthogonal sum by n x A :=
n /in

Proposition 3. Let e(G) denote the exponent of L(G)/T(G). If any sub-
group of a 2-Sylow subgroup G2 of G is a normal subgroup in G2, then

Proof. The proof of proposition 4.3 in [8] implies resG2 E

2 B(G). Since E L(G) we are done by corollary 1. 0

The following theorem gives an affirmative answer to a question asked
in [7]. With it we are able to translate certain problems on annihilating
polynomials to the corresponding problems over 2-groups.
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Theorem 6. Let G be a finite groups with 2-Sylow subgroup G2. Then for
any E B(G) we get

Hence the restriction homomorphism induces an injection

Proof. From lemma 4.2a in [6] we know E T(G2) implies X E T(G).
Let n := ord(G) and let N/K be a Galois extension with Galois group
G(N/K) - G2. Set L := K(X1,...,Xn), where X1,...,Xn are alge-
braically independent indeterminates. The regular representation of G de-
fines a monomorphism G ~ C~({Xl, ... , X~~), where C~(~Xl, ... , Xnl) de-
notes the symmetric group of the set {~1,..., Hence G is a subgroup
of the group of automorphisms AutK(L). Set F := LG and FZ := LG2.
Since G acts transitively on {Xl, ... , Xn}, the polynomial

is irreducible over F. Hence Xl is a primitive element of L/F and of L/F2.
Assume, that Xl, ... , X,, m := ord(G2) are the conjugates of Xl over F2.
For any H  G2 we can choose a primitive element aH of LH / F2 of the
form 9iXf with 9i e L[X1, ... n F2 =: R.
Let X E T(G). Then HLIF(X) = 0 implies 

where H runs over a full set S of nonconjugate subgroups of
G2.
For any H E ~S calculate a matrix MH of  with respect to the

F2-basis l, aH, ... , Hence MH E Gl(nH, R) with nH :_ (GZ : HI -
Since hL/F2 (res G (x)) = 0 E W (F2), there is a matrix A E Gl (t, R) and a
non-zero polynomial g E R with

Let a E N be a primitive element of and let a1 := a, a2, ... , am be

the conj ugates of a over NG2 . Label these elements according to the action
of
Now we choose algebraically independent indeterminates Y1,..., Ym and
set Zl . := Yl +~i~2+~~3+...+~"~,...~m := Y1 + amY2 +

+ ... + By looking at the Vandermonde determinant we
see that Zi,..., Zm are algebraically independent. Replace Xi , ... , Xm
by Zi,...,Zyn. Denote the new polynomials resp. matrices by g, resp.
MH. Hence A - AT - g2 - (t/2x  1, --1 &#x3E;), and ~0.
Since the set of primitive elements of a separable field extension is a non-
empty Zariski-open subset, there is an n-tuple a = (al, ... , an) E Kn, such
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that g(a1’... , 0 and for any H E S the element 9i(a)af is a
primitive element of We get

3. Groups with quaternion 2-Sylow subgroups
This section contains a class of examples, where IM(G,H) is not a principal

ideal.

Proposition 4. Let G be a finite group with 2-Sylow subgroup a quaternion
group of order 8. Let H  G be a subgroup of G with = 1.
Then

(a) ord(H) * 1 mod 2,
(b) ord(H) - 2 mod 4,
(c) ord(H) z 0 mod 4 and the permutation representation of G on

G/H contains only even permutations.
(2) Let ord(H) - 0 mod 4 and suppose, that the permutation representa-

tion of G on G/H contains an odd permutation.
(a) Then G is ca serraidirect product of G2 and a normal subgroup A

of odd order. The conjugation of G2 on A induces a monomor-
phism (D : G2 Y Aut(A).

(b) Let n :_ ~G : H] and s := signaXH with Q E G2 the unique
involution of G2. Then

Proof. 1) see proposition 5.2 in [8]. 2(a) follows from lemma 5.2 in [8].
2(b): We use the notation of §5 in [8]. By proposition 3, theorem 6 and [6,
proposition 7] we get 2(X - n)(X - s) E IMG, H .
Assertion. X(X - n) (X - s) E IM(G,H) if 8 f n.
By proposition 7 in [6] we have to determine the coefficients mi of XH~ in

Since a = 0 we get mis = a’bi + 2bi (2bi -
n - s). Observe, that a’ = ns - 0 mod 4 and n + s - 2a * 0 mod 4. Hence
mi == 0 mod 4. We conclude (2,X) C (IM(G,H) : (SignM~G,H)~X)))~ By the
preceeding theorem and by proposition 5.5 in [8] IM(G,H)~
Since (2, X) is a maximal ideal in Z[X], we are done. 
The case 8 n is left to the reader. D

The smallest example is as follows. The automorphism group of A =

Z/3Z x Z/3Z is a double cover of 64, which contains as a subgroup.
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Set G := A x Q8 and let H be a subgroup of order 4 in G. Then IM(G,H) =
~x, 2~ . ~~x - 18)(X - 2)) (see [8, Example 5.6]).

4. Some more 2-groups
Lemma 1. Let G be a finite 2-group and let H = T &#x3E; be a subgroups of
order 2 in G with = 1. Then

Here CG(r) denotes the centralizer of T in G.

Proof. Set n := [G : H] = ord(G)/2. Since T is not contained in the non-
trivial center of G, we get X ~ by lemma 3.3(2) in [8]. Now
proposition 10 and corollary 11 in [7] gives the result on and
the signature value. 

- -=- _. 

’

We easily calculate Hence

5. Examples

Finally, let us summarize some examples, where IM(G,H) is a principal
ideal.

Theorem 7. In the following cases we get

(1) G has odd order. Then IM(G,H) = (X - n).
(2) G2 is elementary abelian or cyclic.
(3) G2 is a dihedral group of order 2"° &#x3E; 8.
(4) H = 1.
(5) G is abelian. 

’

(6) G is a Frobenius group.
(7) G is a Zassenhaus PML(2, q).
(8) G = 2G2 (q), q = 32m+ 1 , m &#x3E; 1 the Ree group in its doubly transi-

tive permutation representation of degree q3 + 1 and H a one point
stabilizer.
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(9) G a group of order  31.
( 1~) 
There exists four groups of order &#x3E; 8, which contain an element of

order 21. Beside the dihedral group D2l there are the generalized quaternion
group Q21, the quasidihedral group QD2l and the group M(21) (see ~10~(I.
Satz 14.9]).
Proof. For (1) see [3] corollary 1.6.5, resp. proposition 17 in [7].
Use proposition 3 and [6, propositions 5 and 6] to prove (2).
(3) follows from proposition 5.1 in [8].
4) If H = 1, then BG,H (X) = X - n, resp. = X (X - n).
5) The condition on H implies H = 1.
(6), (7) and (8) follow from [8, propositions 6.1, 6.3 and 3.4].
9) By (1), (2), (3) and (5) it remains to consider non-abelian groups of
order n = 8,16,24 and the case n = 24, Z/2Z x Z/4Z.
n = 8. Apply (3), resp. (5) in the case of the quaternion group.
n = 16. Any subgroup H  G of order &#x3E; 4 has a non-trivial intersection
with the center of G (see [14]). Now use lemma 1.
n = 24. The result for G2 - Z/2Z x Z/4Z follows from some unpublished
determination of the exponent of L(G)/T(G) for G = Z/2Z x Z/2IZ.
Since there is no injection Q8 o Aut(Z/3Z), we are done by proposition 4.
(10) follows from lemma 1, since any subgroup H of G of order &#x3E; 4 has a
non-trivial intersection with the center of G. 0
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