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Artin’s primitive root conjecture
for quadratic fields

par HANS ROSKAM

RÉSUMÉ. Soit 03B1 fixé dans un corps quadratrique K. On note S
l’ensemble des nombres premiers p pour lesquels 03B1 admet un ordre
maximal modulo p. Sous G.R.H., on montre que S a une densité.
Nous donnons aussi des conditions nécessaires et suffisantes pour
que cette densité soit strictement positive.

ABSTRACT. Fix an element 03B1 in a quadratic field K. Define S as
the set of rational primes p, for which 03B1 has maximal order mod-
ulo p. Under the assumption of the generalized Riemann hypoth-
esis, we show that S has a density. Moreover, we give necessary
and sufficient conditions for the density of S to be positive.

1. introduction

In 1927, in a conversation with Helmut Hasse, Emil Artin made the
following conjecture [1, preface; 2, page 476]: for any integer a, not equal
to :f:1 or a square, the natural density

of the set of primes p for which a is a primitive root modulo p inside the
set of all prime numbers exists and is positive. Artin based this conjecture
on the observation that a is a primitive root modulo p if and only if for
all primes l, the prime p does not split completely in Here (I
denotes a primitive 1-th root of unity. By Chebotarev’s density theorem,
the density of the set of primes that do split completely in Q(~~, ~ a /(~ is
equal to [Q ((I, ~qa : (a~-1. Using the principle of inclusion and exclusion,
one expects the limit (1) to be equal to

Manuscrit reçu le 2 septembre 2000.
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It is not clear from this expression whether the density is positive. However,
one can show that the infinite sum is equal to a positive rational multiple

A of Artin’s constant

In 1967 Hooley [5] proved that the density (1) is indeed equal to the sum
(2), if the generalized Riemann hypothesis (GRH) holds true. Furthermore,
he explicitly determined ca in terms of the prime factorization of a.

Over arbitrary number fields, there are two ways in which Artin’s con-
jecture can be generalized. We fix a number field K with ring of integers
0 and a non-zero element a E C~ which is not a root of unity. If we replace
Q by K in the above discussion, we expect the following generalization to
hold: the set of primes p of K for which a generates (d/~pC~)* has a density

’ 

inside the set of all primes of K. Note that is indeed a cyclic
group for all primes p. Moreover, the situation is highly similar to the
rational case, as the set of primes p of K for which (0/pO)* is isomorphic
to (Z/pZ)* has density 1. In 1975 Cooke and Weinberger [3, see also 12]
proved that if GRH holds, this generalization of Artin’s conjecture is indeed
true and the density is given by (2) with Q replaced by K. Lenstra [4] gave
a finite criterion to decide whether this density is zero. Note that we can
force the density to vanish by choosing an algebraic integer a, and defining
K to be equal to for some prime l.
The second generalization of Artin’s conjecture is in a ’rational’ direction:

the set of rational primes p for which the order of a in is equal
to the exponent of this group, maximal for short, has a density inside
the set of all rational primes. In this paper we will prove that, modulo
the generalized Riemann hypothesis, this conjecture holds for quadratic
fields K. The reason for restricting to quadratic fields is twofold. As the
exponent of depends on the splitting behaviour of p in K/Q, a
proof of the conjecture needs to distinguish between separate cases, one for
each splitting type. Quadratic fields admit only two unramified splitting
types, and already in this case a fair amount of non-trivial Galois theory
is needed to deal with the inert primes. More serious however is the fact
that the analytic part of our proof of the conjecture in the quadratic case
does not readily generalize to higher degree fields. Such a generalization
to fields of degree k &#x3E; 3 implies that the set of primes dividing a ’generic’
k-th order linear recurrent sequence has a positive lower density [9].

Fix a quadratic field K with ring of integers 0 and a E K*. The generic
primes are by definition those odd rational primes p that are unramified
in and for which there are no primes in d above p in the fractional
ideal factorization of aO. As we are interested in density questions, we can
disregard the finite set of non-generic primes.
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For a generic prime p, the image of a in is well defined. If p
is a generic prime that is inert in K/Q, the group is cyclic of
order p2 - 1. For these primes we can ask whether a is a generator of
( /pO)*. We define the set S- as

S- = lp generic prime : p is inert in K/Q and (a) = (OlpO)*I.
If p is a generic prime that splits in K/Q, the group is no longer
cyclic, but isomorphic to F~ x Fp. This group has exponent p -1, so we
define the set S+ as

S+ = {p generic prime : p splits in K/Q and a has order p-1 in 
Before we state theorem 1 we make two more remarks.
1. The generalization of Artin’s conjecture that was proved by Cooke and
Weinberger does not imply the existence of the density of S+; it is possible
that p is in S+ while a does not generate (0/pO)* for either of the primes
p above p.
2. We say that a and its conjugate 1ii are multiplicatively independent if
the subgroup {a, 1ii) C K* is free of rank 2, or equivalently, if the map
Z2 --~ K* sending (a, b) to aaab is injective.
Theorem 1. Let K be a quadratic field. and fix an elements a E K* . De-
fine the sets S+ and S- as above and suppose the generalized Riemann
hypothesis holds. Then S+ and S- both have a natural density inside the
set of all rational primes. Moreover, there exist rational numbers c+ and
c., depending on a, such that

We are not able to prove the existence of the density unconditionally. Even
in the case of Artin’s original conjecture it is not known whether, for a given
non-square integer -l, the set of primes p for which a is a primitive
root modulo p is infinite.
To explain the significance of the rational numbers ct and c~, we first

sketch the proof of the theorem. In section 2 we characterize the primes in
S+ and S- in terms of splitting conditions in the fields

where I ranges over the prime numbers. The fields Ll are the analogues of
the fields C~(~t, ‘ a occurring in the proof of Artin’s original conjecture.
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To express the densities as infinite sums similar to (2), we adapt Hooley’s
arguments to our situation. This is straightforward for the set S+; for the
inert primes additional arguments are needed. In order to prove that these
infinite sums are equal to the Euler products in theorem 1, we need to know
the obstruction for the fields with 1 ranging over the primes, to be
linearly disjoint over K. Here and in the rest of this paper, we say that
a collection of subfields fLiliEI of some field L is linearly disjoint over a
subfield K~ of L, if the following holds: for all j E I, the intersection of Lj
and the compositum of the fields is equal to K. In addition, we
have to compute the degrees of the fields Li. In propositions 8 and 10 we
determine a finite set of primes I such that the fields are of ‘generic’
degree and linearly disjoint over K. The rational numbers c+ and c~ take
care of the remaining primes, and can be seen as ’correction factors’.

In Artin’s original conjecture, the density of the set of primes p for which
a is a primitive root vanishes if and only if a is -1 or a square, the if-part
being obvious. In our situation there are also some more or less obvious
situations of zero density.

Proposition 2. Let K, a, S+ and S- be as in theorem 1.

a. In each of the following cases, the set S+ is finite: (i) a is a root of
unity,; (ii) a is a square in K*; (iii) K = Q((3) and a is a cube in K*.

b. In each of the following cases, the set S- is finite: (i) a and a are
multiplicatavely dependent; (ii) a is a cabe in K*; (iii) a

square in Q*; (iv) K = Q((3) and 2 is a cube in K*.

Proo f . a. If a is a root of unity, the set S+ is clearly finite. Now assume
that a is a square in K* and that p is a generic prime that splits in K/Q.
As p is odd, the exponent of (O/pO)* is even, so the order of a in this
group divides (p -1)/2. We find p g S+ and the set S+ is empty. If K
is equal to Q((3) and p splits in K/Q, the exponent p -1 of the group

is divisible by 3. In case a is a cube in K*, its order modulo pO
is at most (p -1 ) / 3 and hence S+ is empty.
b. Let p be a generic prime, inert in K/Q. Assume that a and a are

multiplicatively dependent, say aaj,6 = 1 for integers a and b with a non-
zero. Taking the norm to Q yields = 1. In case that a + b = 0,
we find aa to be rational, so the order of a in (C?/pn)* divides a(p 2013 1).
Otherwise, we have and, as NK/ (a) is congruent to aP+l
modulo pO, the order of a in is at most 2(p + 1). The set S- is
clearly finite in both cases.

For a generic prime 3 that is inert in the order p2 -1 of the
cyclic group is divisible by 3. If a is a cube in K*, its order in

divides (p2 -1)/3, hence S- is a finite set.
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If a has order p2 -1 in (OlpO) *, we find that = aP+1 mod pO
has order p -1 in Fp. As p is odd, this implies that NK/Q(a) is not a square
in Q*. In other words, if NK/Q(a) is a square in Q* then ,S- is empty.

Finally assume .~ is equal to (~(~3) and p is a generic prime that is
inert in so p = 2 mod 3. Write a/a = ,Q3 for some {3 E K*. As

{3 has norm 1, its order modulo pO divides p + 1 and hence the order of
a/a mod pO divides (p + 1)/3. Using the congruence a/a - mod pO
we find that the order of a mod pd is at most (P2 - 1) /3, hence S- is

empty. D

Apart from the cases listed in proposition 2, there are other situations
in which one of the densities vanishes. To state them, we let D be the
discriminant of K and we assume that a is not a cube in K*. This last

assumption implies that at least one of the elements or a/a is
not a cube in K*, and the field k3 below is well defined. For each prime 1
define the field kl as follows:

For K 0 Q((3) these are quadratic fields. In section 6 we prove the follow-
ing theorem.

Theorem 3. Let K, a, S+ and S- be as in theorem 1.
a. The set S+ has density 0, and is actually finite, if one of the following

statements holds:

i. a satisfies one of the conditions of proposition 2a;
ii. K = Q(J5), a is a 15-th power in K* and is equal to the

maximal real subfield of 
b. Define the fields k2, k3 and k5 as above. The set S- has density 0, and

is actually finite, if one of the following statements holds:
i. a satisfies one of the conditions of proposition 2b;

ii. Among the fields K, k2, k3 and k5, there exist three different fields
whose compositum has degree 4 over Q.

If the generalized Riemann hypothesis holds, these are the only cases in
which the density of S+ or S- is zero.

We have chosen not to give an explicit formula for ct and c. , as such a
formula will be complicated and not very enlightening. To get a feeling
for the problems involved in computing these constants, we will treat some
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explicit examples in section 7. We gave precise formulas for the density of
related sets in [8].

There is an infinite set of a’s for which the constants ct and ca are easily
computed. Hooley proved that in the original conjecture the equality ca =1
holds if and only if a is not a power in Q* and the prime 2 is ramified in

We have the following similar result.

Theorem 4. Let K be a quadratic field with composite discriminant and
let p’K be the torsion subgroup of K* . We assume that a and ä are mul-
tiplicatively independent, that a, 1ii) is torsion free and that the
prime 2 is totally ramified in L2 = If GRH holds, then the
densities of S+ and S- are given by the following formulas:

Independently, Yen-Mei J. Chen and Jing Yu have recently proved that,
modulo GRH, the set S- has a density for a restrictive set of imaginary
quadratic integers a (private communication, unpublished). For some very
specific a’s, they showed that this density equals a positive rational multiple
of an Euler product as in theorem 1 and 4.

The paper is organized as follows. In section 2, we characterize the primes
in S’+ and S- in terms of their splitting behaviour in the extensions LI/Q,
where I ranges over all primes. These fields ILI JI tend to be linearly disjoint
over K. To make this precise, we study the composita L~ of the fields

in section 3. Here and in the rest of the paper, the index variable
1 will always range over prime numbers . Section 4 contains the analytic
part of the proof of theorems 1 and 4: if GRH holds then both S+ and S-
have a density which is given by an infinite sum similar to (2). The proof
of the theorems 1 and 4 is completed in section 5 and theorem 3 is proved
in section 6. Finally, in section 7 we compute for some a’s the rational
constants c; and ca .

2. Splitting conditions

In this section we characterize the primes in S+ and S- in terms of their
splitting behavior in certain number fields. The order of a modulo a generic
prime p is non-maximal if and only if the there exists a prime 1 such that

(3) 1 divides and a is an l-th power in 

Namely, if I satisfies (3) then I divides the exponent of (0/pO)* and a has
non-maximal order modulo p. To prove the other implication, we assume
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that the order of a modulo pO is non-maximal. If p is inert in K/Q, the
group is cyclic and any prime divisor I I (a)] satisfies
(3). If p splits in K/Q, the group is of exponent p 2013 1 as it is
isomorphic to the product of two cyclic groups, both of order p - 1. As a
is non-maximal modulo p, there exists a prime I I p - 1 such that the order
of a in divides (p - 1)/l. Therefore, a is an 1-th power modulo
both primes pip in K and 1 satisfies (3).

If we define the sets

{p generic prime, inert in K/Q and either 1 # (O /pO)*
or (OlpO)*ll

and

{p generic prime, splits in and either I ( #(O/pO)*
or 

where denotes the subgroup of 1-th powers in we find
the following equalities:

- r------

We can reformulate statement (3) as the complete splitting of Xi - a
modulo the prime(s) in d above p. The set of these prime(s) is stable under
the non-trivial automorphism of K. Therefore, if a splits completely
modulo these primes, so does Xi - a. Here a denotes the conjugate of a
over Q. This gives the following characterization of the primes which are
not in Sa or st.
Proposition 5. Let 1 be a prime and de, fine the field Li as

Lt = K(~l ~ ‘ a~ ‘ a) ~
a. For a generic prime p that splits in K/Q the following equivalences

holds:

p 0 Si 4====~ p splits completely in 
b. For a generic prime p that is inert in K/Q the following equivalence

holds:

p 0 Si ~ pd splits completely in LIIK.

By Chebotarev’s density theorem and this proposition, we conclude that the
sets Si and Sl have a density in the set of all primes. The same conclusion
holds for the finite intersections Sn = n I n Sl and S~ - nlln Sl for all
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n E as the primes in these sets are characterized in terms of their
splitting behaviour in the number field Ln, the compositum of the fields

Because of the equalities (4) and (5), the primes in S+ and S-
are characterized by splitting conditions in the infinite extension Loo? the
compositum of the fields Li where 1 ranges over all prime numbers. One
would like to prove the existence of the densities of S+ and S- by applying
a theorem analogous to Chebotarev’s density theorem to the field Loo.
However, even the formulation of such a theorem is non-obvious; all primes
of Loo which do not lie above 2 are ramified and therefore do not have a
well-defined Frobenius element.
Our proof of the existence of the density of S+ and S- is analogous to

Hooley’s proof of Artin’s original conjecture. The key observation is the
following. As S+ can be seen as a ’limit’ of the sets S~ , one expects the
density of S+ to be equal to the limit of the densities of the sets S¡. A
similar observation holds for the set S- . In section 4 we will adapt Hooley’s
arguments to our situation, and prove that this limit argument is indeed
valid if we assume GRH. This is straightforward for the set S+, but causes
some difficulties for the set S-. Proposition 5 characterizes the primes p in
Sl by the property that the Frobenius class of the prime of K in Li /K
is non-trivial. In order to adapt Hooley’s analytic arguments, we have to
characterize the primes in S~ as those primes which have a non-trivial
Frobenius in extensions of Q.

Proposition 6. Suppose p is a generic prime, inert in K/Q. Define for
each prime 1 the 

a. Let 1 be an odd prime and assume that K is not the quadratic subfield
of Q((,). Let N2 be the unique extension of Q ( f t + ~j 1 ) that contains
neither K nor (i and such that KN2 = K ( (" The fields N1
and N 1 2 are raormal over Q and drawn in the diagram below.
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The following equivalence holds:

(6) Si 4=* p splits completely in either Nl/Q or Ni /Q.
b. Assume NK/Q(a) is not a square in Q*. IfNK/Q(a) is a square in K*,

then p is in S2 . If NK~Q(a) is not a square in K*, then the following
equivalence holds:

p rt S2 ~? p splits completely in N2’/Q.

Proof. We first give a different formulation of proposition 5b in case p :A I.
Fix a prime I, and let I be a generic prime that is inert in K/Q. All
primes p above p in Li are unramified, so their Frobenius automorphisms
(p, Ll/Q) are well-defined. The order of (p, Li/Q) is equal to the residue
class degree of p in LI/Q and independent of the choice of p above p. We
reformulate proposition 5b for an inert prime p =A I as follows:

a. Let 1 be an odd prime. Because of the equivalence above, we first
characterize the elements in of order 2 that are non-trivial on
K. Assume p is such an element. The restriction also has order 2

and therefore lies in the maximal exponent 2 subgroup
of Gal(K((,)/Q). Here (t denotes a generator of the maximal real subfield
of Q(~~). Let T and 0’ denote the generators of and

respectively. The assumption K 0 Q((,) implies that
Gal(K(~~)/fa(~‘ )) = (Q) x ~T) is isomorphic to Klein’s four group. As p
is non-trivial on K, we find that pIK((,) equals or aT. Fix an element

p E (a, and define Fp as the fixed field of p. Consider the following
exact sequence:

The group Gal(Ll/ K((l» has odd exponent, hence any element of order 2
in Gal(LI/Fp) restricts to p. This proves that the sequence splits and that
there indeed exist elements p E Gal(LI/Q) of order 2 that are non-trivial
on K. We fix an isomorphism

The abelian group G = Gal(LlI K((l» is a module over the group ring
F~~(p)~. Because I is odd, there is a decomposition G = Hp x HP , with

The element p acts trivially on Hp and by inversion on Hi. We conclude
that p E is of order 2 and non-trivial on K if and only if
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By definition of Hi, the group (p)) is the maximal quotient of
G that is abelian of exponent l. In particular, Hi )4 (p) is a characteristic
subgroup of G and therefore normal in 
Now we are able to prove the equivalence (6). Define the normal fields

Nl and N2 as the fixed fields of H; )4 (0’) and H~T )4 respectively.
Let p # I be a generic prime that is inert in and choose a prime p
above p in Li. By the equivalence (7) and the characterization (8), we find
that p ~ ST if and only if the Frobenius automorphism of p in lies
either in H; » (a) or in )4 (aT) . In other words, the prime p is not in
Si if and only if p splits completely in either or 

generic and inert in K/Q, then 1 does not divide ~(d/dC~)* and is therefore
contained in ST. On the other hand, the prime I ramifies in both 
and N,2/Q, hence does not split completely in either of these extensions.
To determine the fields Nl and N,2, we have to understand the conjuga-

tion action of a and aT on Gal(L,/K((,». This can be done by considering
the Galois equivariant, bilinear and non-degenerate Kummer pairing:

Using the fact that a acts trivially on (I and interchanges a and a-, we
find for h E the following equivalences:

Therefore, the group H§ corresponds to the field K(~l, ~ NK~Q(a)). Taking
the invariants under a yields Nl = Q((1 , 
As T fixes a and inverts (I we find:
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The fixed field K(~c, ~ a) of H~. is a quadratic extension of N2. As err is
non-trivial on both K and (1, the field N,2 does contain neither of them and
KN2 = K(~~, ~ a). On the other hand, any extension N of Q((#) that
contains neither K nor (I and for which ~K(~~, ’ a) : N~ = 2 is an exponent
l extension of FaT and hence equal to NZ. This concludes the proof of 6a.

b. Assume p is a generic prime, inert in The degree of L2 =
K (Va, divides 8. If NKIIQ (a) is a square in K* but not a square in
Q*, then L2/Q is cyclic of degree 4. The Frobenius of all pip in 
have order 4 and the equivalence (7) implies that p is an element of S2 .

If N(a) = NK~Q(a) is not a square in K*, then L2/Q is dihedral of
degree 8, and the Galois group of both L2/K and L2/Q( N(a)) is isomor-
phic to Klein’s four group. If p splits in all pip in L2 have a
Frobenius of order 2 and p is not an element of S2. On the other hand, if p
is inert in K/Q and in Q( N(a))/Q, it splits in the third quadratic field
Q(ýD. N(a» C K( N(a)), where D denotes the discriminant of K. As
L2 I Q ( Ý D . N ( a» is cyclic of order 4 and the primes above p are inert in

N(a)), the Frobenius of all p I p in L2 /Q have order 4
and p is in 82 . 0

The proof of proposition 6 yields the following corollary, which we need in
the proof of proposition 19 in section 6.

Corollary 7. Let 1 be an odd prime and let p E Gal(Li/(a) be non-trivial
on K such that pIK«I) has order 2. Furthermore define the set

If K is not contained in Q(Cl) then the following equivalence holds:

where Ni,p is the unique field in N~ } that contains the fixed field of
PIK((,). The set Cl has cardinality

Proof. We use the notation from the proof of proposition 6. Let p E
be non-trivial on K, and of order 2 when restricted to K((I).

By construction exactly one of the fields Nl and Nl contains the fixed field
of so is well defined. In the proof of proposition 6 we saw that
p has order 2 if and only if p is trivial on Nl or As K is contained in
the compositum of these fields, the element p can not be trivial on both,
and the equivalence is proved.

To compute c(l), we use the characterization (8) of elements in Cl and
find c(l ) = #H; + The orders of Hj and are equal to the
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degrees of L, over KNI’ and KN,2 respectively. Using the definitions of N1
and N2 yields the desired result. 0

By Chebotaxev’s density theorem and proposition 5 we find for each prime
I the following formulas:

Here c(l) denotes the cardinality of the set Ci, which was defined in
corollary 7. In the proof of theorem 1, we need to know the values of these
densities. It turns out that for all but finitely many primes l, these densities
have a generic description in terms of l.

Proposition 8. Let r be the free rank of (a, ix) and let t be the order of
the torsion subgroup of K*/(a, d) -
a. In each of the following cases I(S/) is positive: (i) 1 &#x3E; 5 prime; (ii) 1 =

3 and K 0 Q(~3); (iii) 1 = 2 and K*2.
For all primes 1 f 2t such that K 0 Q(,) we have [Li : K] = (l - 1)l’’.

b. In each of the following cases is positive: (i) 1 &#x3E; 5 prime; (ii) 1 =
3, K ~ Q ((3) K*3; (iii) 1 = 2 and Q*2.
If r equals 2 2t is a prime such that K 0 Q(~1), then zue have

and both Nll and N2 are of degree l(l - 1) over Q.

Proof. a. As is contained in Li , we have [Li : K~ &#x3E; [7~(~) : K~ &#x3E; 2
for all primes 1 &#x3E; 5. The same inequality holds for 1 = 3, provided K is
not equal to Q((3). If a is not a square in K*, the extension L2/K is also
of degree at least 2. In all these cases, the set st has positive density by
formula (9).
The fact the t is finite is well known. Let 1 ~’ 2t be a prime such that

K is not contained in Q(Ci). The last condition on 1 implies [Li : K] =
[Li : K] = (l - K((,)]. By Kummer theory, the
degree [Li : K(Cl)] equals the cardinality of the image of W = (a, a) in

We compute this cardinality in two steps.
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First we show that the map

is injective. Namely, if x mod K*l is in the kernel, we can write x = y~
for some y E K((,)*. Applying the norm map from to K yields the
equality = We find that x is trivial in K*IK*I, as
its order divides both 1 and ~K(~~) : K~.

If we can write w = y’ for some w E W and y E K*, the image of y in
is an 1-torsion element. As we assumed that I does not divide the

order of the torsion subgroup of K*/W , we find that y is in W and the
map

is injective.
With these two observations, we find that the degree [L3 : K((l)] is equal

to the index [W : Wl]. As K is by assumption not contained in 
and 1 is odd, the group W has no non-trivial 1-torsion. Therefore we have
[W : = F and we conclude that Li is of degree (l - 1)1’ over K.

b. Let I be an odd prime and assume that K is not contained in Q ((I) .
By corollary 7 we have

This implies the inequalities e 1  2 for 1 &#x3E; 5. In case a is not a cube

in K*, at least one of the elements or g is not a cube in K* and
we find the upper bound c(3)/[L3 : K~  2/3. Using formula (10), we see
that in these cases Sl has positive density. The result for b(,S2 ) follows
immediately from proposition 6b.

If a and 1ii are multiplicatively independent and the prime I does not
divide 2t, forms an Fi-basis for by the proof
of proposition 8a. In particular, neither alii nor g is an l-th power in

K ((I ) * and by Kummer theory, K«(,,1NK/Q(a» and KN2 =
K(~l, ~ a ) are of degree lover K ((i ) . Substituting this in the above equality
yields the result for K]. The field K is linearly disjoint from both
Nl sowefind [Nl : :(~~=[KN~ :K~=l~~K(~~):K~=Z(l-1).
The same equality holds if we replace N~ by N2.

To conclude the proof of proposition 8b, we have to prove &#x3E; 0
in case K is contained in Q((/) for some prime ~5. This is left to the
reader. D
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3. The Galois structure of L~/Q
As we already noted in the last section, the finite intersections Sn =

nii. Si have a density. These can can be computed by
Chebotarev’s density theorem, in the same way as we computed and

6(Si ) in (9) and (10). Using the principle of inclusion and exclusion, we
find the following formulas:

with Ld the compositum of the fields and L1 = K, and

with c(d) _ E Gal(Ld/Q) : id and Q2 = In the next

section, we will prove that if GRH is true, these formulas also hold if we
take the limit n = I - oo, thereby proving the existence of 6(S+)
and 6(S-). It is not clear from (11) and (12), whether these densities are
positive. If the fields are linearly disjoint over K, the summands
of (11) and (12) are multiplicative in d and we obtain product expressions
for the densities of Sn and In this case it is easy to conclude whether
these densities vanish. However, the fields are not in general lin-
early disjoint over K. For example, if K = Q( -15) the field Q( v’5, 3)
is contained in both L3 and L5.

Proposition 10 below shows that the fields ILIJI are not too far from
being linearly disjoint over K. We will need the following lemma.

Lemma 9. Let F/Q be a finite abelian extension of exponent e. If n and
m are relatively prime integers then also of exponent e
over Q.

Proof. As F is contained in the intersection, it is sufficient to prove that
the exponent of n divides e. Recall that the character group
X (L) of an abelian number field L is defined as the group of homomor-
phisms Gal(L/Q) - C*, and that X(L) is (non-canonically) isomorphic to
Gal(L/Q). It is therefore sufficient to prove that the order of 1/J divides e
for all 1/1 E X(F((n) As 1/1 is both in X(F(Cn)) and in X(F(m»
we can write 1/1 = Xlpl and 1/J = X2P2 with Xl E X2 E X(Q(m»,
and pl, p2 E X(F). The element pi lp2 = XlX21 is in X(F), so its order
divides e. As and Q((m) are linearly disjoint over Q, the group

is isomorphic to X(Q((n» x X(Q((m» and the order of Xl di-
vides that of Consequently, the order of 0, which divides the least
common multiple of the orders of Xl and pl, divides e. 0
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For any number field F, we denote by Fab the maximal subfield of F that
is abelian over Q. For integers k and n, we denote their greatest common
divisor by (k, ~t).

Proposition 10. For all positive integers n, let Ln be the compositum of
the fields De fine the integer f as follows:

For all positive squarefree integers n and m that are relatively prime, the
following statements hold:

d. Ln n Lm is abelian over Q of exponent dividing e, with

e. L~ fl L2 f, if nrrL and 2 f are relatively prime.
f. Ln fl Lm = K, if the prime 2 ramifiées completely in Lab/Q.

Proof. For a prime 1, the field L, is defined by and 10a
follows immediately.
The degree L~)] divides both [Ln : and [Lm :

L~]. As Lab contains K(~k) for each squarefree integer k, we find that ~Ln :
L’b] and [Lm : divide n2 and m~, respectively. Using the assumption
that n and m are relatively prime, this proves lOb.

In order to prove 10c, we first show that for an odd prime 1 the field Lib
coincides with unless both K is equal to (~(~3) and 1 is equal to 3.
The extension LlIK((l) is a Kummer extension of degree dividing 12. The
intermediate fields of this extension are of the form K((l, ~), where W is
a subgroup of (a, a), the multiplicative subgroup of K* generated by a and
a. If Lib is strictly larger than K(~l}, there exists a {3 E (a, a), not an 1-th
power in K(~~}*, such that ~"(~,~9) is abelian over Q. As a consequence,
the 1-extension is normal, which forces a primitive 1-th root of
unity to lie in K (~) . Because 1 is relatively prime to the degree 
over ,K, the 1-th roots of unity are contained in If K is not equal to
Q (~3 ) or 1 is not 3, this is a contradiction and we find Lab = K((l). For
K = Q(~3} we use the Kummer pairing as in the proof of proposition 6
and find that L3b is equal to Q(~3, with W the largest subgroup of
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(a, 1ii) on which Gal(Q((3)/Q) acts by inversion. This yields the equality
L3b = Q((3, ~~), a cyclic extension of Q of exponent dividing 6.

For the general case, we abbreviate the compositum of the fields 

by Mn, which is clearly contained in Lg . Restricting automorphisms gives
the following injective map:

Injectivity follows from the fact that the fields generate L,~. As

the intersection Labn Li equals Lab for t 1 n, the image of the subgroup
C Gal(Ln/Mri) maps surjectively to each component. For

different primes the groups have relatively prime orders, as
is an 1-extension for all L Consequently, the group 

maps surjectively to the product, the map 0 is an isomorphism and Lab
equals Mn. This proves 10c.
The number e in lOd is well defined. Namely, if K is equal to Q((3)

then Lab/Q is of exponent 2; if L2b would be cyclic of degree 4 over Q, its
unique quadratic subfield K would be real. To prove 10d we assume that
K is not equal to Q ((3), that m is odd and n even; the other cases are
similar and left to the reader. Using lOb and lOc we see that Ln fl L~ is
contained in fl K((m) C Lab (cn) n Statement 10d follows

by applying lemma 9 with F = L2b, a field of exponent 2 or 4 over Q
As K is contained in L2b, the conductor D of K divides f . Note that

if K is equal to (~(~3), then f is a multiple of 3. Assume nm and 2 f are
relatively prime, hence K is not contained in and the fields K((n)
and K(~m) are linearly disjoint over K. Using lOb and 10c we find the
equality Ln fl Lm = K. To prove the second equality in 10e, we first note
that the definition of L2 f only depends on the squarefree part of 2f - With
this in mind, we again use 10b and 10c and find:

As n and f are relatively prime, the field K is contained in Q(Cf) but not
in Q (Cn) and an easy computation shows that the degree of K (Cn) n 
is 2. As K is contained in this intersection, we find Ln n L2 f = K.
To prove 10f, it is sufficient to prove the equality Ln fl L2m = K, for odd,

squarefree and relatively prime integers n and m. Assume that the prime
2 ramifies completely in hence it ramifies in all subfields of Lab
Therefore, the fields L2b and Q((nm) are linearly disjoint over Q and, as
K C L ab 2 so are K and Furthermore, as 2 is unramified in (~ (~’3 ),
the field K is not equal to Q (~3 ) . Using 10b and 10c we find the following
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equalities:

As K is a subfield of Ln fl L2m, this proves the last statement of the propo-
sition. 0

Corollary 11. Let r be the free rank of ~a, a~ . There exists a positive
constant depending on a, such that for all positive square f ree integers
n the following inequalities hold:

Assume that a and it are multiplicatively independent and define for each
positive sq2carefree integer n the number c(n) = E Gal(Ln/Q) :

id, q2 = id}. For all - &#x3E; 0 there exists a constant r-2, depend-
ing on - and a, such that for all positive squarefree integers n the following
inequality holds: 

I .

Proof. The upper bound for [Ln : K~ follows easily from proposition 10a.
To obtain the lower bound, let no be the maximal divisor of n prime to
2t f . Here f is defined as in proposition 10 and t is the order of the torsion
subgroup of K* / (a, a) . Note that, as n is squarefree, the quotient n/no is
bounded by 2t f . By proposition 10e, the fields ILIIllno are linearly disjoint
over I~. By Galois theory, the group is canonical isomorphic
to the fibred product of the groups over Gal(K/Q). As
a consequence we find the equalities c(no) = c(l) and [Lno : K] =

K~. Applying proposition 8a yields

with xi = independent of n.
Using proposition 10e and 8b we find that for each - &#x3E; 0 there exist

constants ~2 such that the following holds:

Using proposition 10, we are now able to describe Gal(Ln/Q) in terms of
the groups IGal(LI/Q)Ill.. This will be used in the proof of theorem 3.
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Proposition 12. Let n be a positive squarefree integer and define

6 
e = 4 if 2 1 n and L2b/Q is of exponent 4;

2 otherwise.2 otherwise.

Let M be the compositum of the fields where Ml is the maximal
subfield of Li that is abelian over Q and of exponent dividing e. Then the
fields are linearly disjoint over M. Consequently, Gal(Ln/Q) is
the fibred product of the groups over Gal(M/Q):

Proof. Let l I n be a prime. We have to prove the equality
[MLI : At] - M] = [Ln : M]. By Galois theory, the extensions in

the diagram that are indicated by the same
symbol, have the same degree. Therefore, it is
sufficient to prove that M is the disjoint com-
positum of Ll n M and MnLn/z over LznLn/z.
The compositum and MnLn/z
contains the fields Mq for all primes q I n and
is therefore equal to M. By proposition 10d,
we know that Lz n Ln/z is abelian over Q of
exponent dividing e. As Mi C Li is the maxi-
mal abelian subfield of exponent e over Q, this
intersection equals M, n Ln/l = M n Li n 

-1 1

In other words, the field M is the disjoint compositum of L, fl M and
M n over L, n Ln/l. 0

We conclude this section with a well known result that will be used in the

proof of theorem 14.

Proposition 13. There exists a constant x3, depending on a, such that
for all n E Z&#x3E;l and all subfields F C Ln the following inequality holds:

where dF is the absolute value of the discriminant of F.

Proof. It is sufficient to prove the formula for F = Ln, as the root-

discriminant is maximal for this choice of F. Let R be the set
of rational primes that ramify in Ln/Q. We write R = Ri U R2, with Ri
the set of primes in R that do not divide [Ln : Q] and R2 = RBR1. If

p E R1 then either p ramifies in K/Q or there exists a prime above p in



305

K in the factorization of the fractional ideal (a). The primes in Ri are
therefore bounded independently of n. Let

be the ideal factorization of the different of L~/Q. The integers ap are
independent of the primes p above p, as Ln is normal over Q, and satisfy
the following bounds [11, page 58]:

ap = ep -1 if p is tamely ramified;
ap  + epvp (ep) if p is wildly ramified.

Here vp denotes the p-adic valuation and ep is the ramification index of p
in Ln/Q. If p is wildly ramified in the Galois extension then p
divides [Ln : Q] so that p E R2. By taking the norm of to Q, we
find the following:

..

As the primes in Ri are bounded independently of n and the degree [Ln : Q]
is at most by corollary 11, this proves the proposition. D

4. The analytic part of the proof of theorems 1 and 4

The proof of theorems 1 and 4 is in two steps. Theorem 14 below
is the analytic heart of the proof: both S+ and S- have a density if we
assume GRH. As we mentioned in the introduction, the proof is along the
lines of Hooley’s proof of Artin’s original conjecture [5, see also 7]. In the
next section we finish the proof of both theorems: the formulas for the
densities in theorem 14 below are equal to Euler products. This part is
more algebraic and does not require GRH.

Theorem 14. Assume the generalized Riemann hypothesis holds. If a is
not a root of unity, then the density of S+ exists and equals

If a and its conjugate d are multiplicatively independent, then the density
of S- exists and equals

with c(n) = #{Q E Gal(Ln/Q) : alK =I id,a2 = id}.
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As the proofs for the existence of 6(S+) and 6(S~ ) are similar, we will
prove the existence of the latter and leave the easier case, the existence of

6(S+ ) , to the reader.
We assume that a and 1ii are multiplicatively independent. We are

interested in the growth rate for z - oo of

in comparison with 1r(x), the number of primes up to x. The key idea for
computing this quantity is the following. By formula (10) and corollary 8b,
for large 1 the density of S~ is close to 2. In other words, we get a good
approximation of S- (x) by ignoring the primes up to x that are not in

Si for some ’large’ y. To make this precise, we define for x, y E R&#x3E;o
the numbers

and, for z E R U {oo} with z &#x3E; y,

For each y E R&#x3E;o, we have the following inequalities:

We will prove that with y = 7 logx, the limit 8- = limx-4oo S-(x, y) /,7r (x)
exists and that the error term M-(x, y, oo) is for x -+ oo. With
the inequalities (14) this shows that the density of S- exists and equals 8-.

First we focus on S-(x, y). By the principle of inclusion and exclusion
we find

where P(y) is the product of all primes up to y, and

7r~ (z, n) = with p inert in and p ~ Si for all primes i I nl
= with p inert in and p splits completely in Ln/Kl.

The last equality follows from proposition 5b. To estimate 7r- (x, n), we
need an effective version of Chebotarev’s density theorem. The known
versions of such a theorem all have error terms in their statements which
are too large for our purpose. However, we have the following conditional
result of Lagarias-Odlyzko, in the formulation of Serre [10, page 333].



307

Theorem 15. Let F/Q be a normal extension with Galois group G, let C
be a union of conjugacy classes of G, and denote the absolute value of the
discrarrainant of F by dF. Define 7rc(x) as follows

7rc (x) = #~P ~ x with p unramified in F/Q and (p, F/Q) C Cl,
where (p, denotes the Frobenius class of p in F/Q. If we assume the
generalized Riemann hypothesis, then there exists an absolute constant r~4
such that for x &#x3E; 2 the following inequality holds:

with Li(x) = lo g tt the logarithmic integral.

To approximate 7r- (x, n), we apply theorem 15 with F = Ln and

If we assume GRH and use proposition 13 for the estimate of the discrimi-
nant of Ln, we find

where c(n) is the cardinality of C(n), and the implied constant only depends
on a. If we substitute (16) into (15) with y = i7 log x, we find for z - oo
the following:

Here we use the notation log 2 x for To derive formula (17), we used
the trivial bound c(n)  [Ln : Q]  2n3, and the inequality P(y)  e2y.
The constant x = i7 is chosen in such a way that the sum over n log x)
of the error term in (16) is of order o(x(z)) for x -* oo. By corollary 11,
the limit for x -~ oo of the sum in (17) converges.

To finish the proof of theorem 14 in the inert case, we are left with
proving that M-(x, i7logx,oo) = o(7r(x» for x -+ oo. As in Hooley’s
proof, we use the following trivial identity:

1 1 
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For each term on the right we use a different method to prove that it is
for z - oo. For the last two, we can do this unconditionally; for

the first we use GRH.
For the first term on the right in (18) we find the following trivial upper

bound:

Here indicates summation over all primes I with

If we apply theorem 15 to bound 7r- (x, l), we are not able to prove that
the right hand side of (19) is o(1r(x)) for z - oo. This is caused by the
presence of the cardinality of C(l) in the error term of ~r-(~, l). Therefore
we first apply proposition 6 and find the following.

Now we use theorem 15 to bound the right hand side of (20). For example
with F = Nl and C = we find that the first term on the right of

1

(20) is bounded by

By proposition 8b and the assumption that a and a are multiplicatively
independent, the first sum in (21) is part of the tail of a convergent sum and
therefore tends to 0 oo. The second term in (21) is O(xl log2 x),
by an easy application of the prime number theorem. The same estimates
hold for the last term in (20) and we conclude that

- -

To bound the second term in (18), we use the following result of Brun-
Titchmarsh. Fix a prime I and an integer a which is not divisible by l. For
all x &#x3E; I, the number of primes up to x that are congruent to a modulo 1 is
at most 3x/(l -1) log(x/l). If a prime p splits completely in ~1 or N2 then
p - ::1::1 mod t, as Q((/ ) is contained in both these fields. For the second
term in (18) we find:

where the summation is over those primes I with  fl log j?.
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For the last term in (18), we again use proposition 6 and find the
following upper bound for M-(x, JXlogx, oo):

(22) ~~#{p  ~ inert in K/Q and that split completely in +

~~y~{p  x inert in K/Q and that split completely in 
where E’ now means summing over all primes l &#x3E; qE log x. We prove that
the last term in (22), M for short, is o(7r(x)). A similar proof works for the
other term and is left to the reader.

Let p be a generic prime that is inert in K/Q and that splits completely
in N,2/Q. In other words, the prime pO of K splits completely in KN,2 =
~(Q? ~~7~). Therefore, a/a is an l-th power modulo pO. As a/a is in the
kernel of the norm map (O/PO)* ^--’ F*2 ~ Fp, we find (a/a)~’+1 - 1 mod p.
By definition of N2, the intersection equals Q(~~ ), the maximal
real subfield of Q(~~). Therefore, I divides p + 1 and we find that the
fractional ideal generated by (alä)(P+1)/l -1 has positive valuation at the
prime pO. To bound M, we note that, as P  x and 1 &#x3E; JXlogx, we have
the upper bound (p + 1)/1  2JX I log x. Choose integers # and q of K
such that a = ,~~y-1. We conclude that M is bounded above by the number
of primes dividing the integral ideal generated by

This is a non-zero integer of K, as (a, a) has rank 2 by assumption. Taking
the norm to Q, and noting that the number of primes in a non-zero integer
N is of order 0(log we find that M is of order

with 6 = 

We conclude that M-(x, i7 log x, oo) = log log x/ log2 x), and com-
bined with (14) and (17) we find

As ~r(x) ~ Li(x) ~ for z - oo, this concludes the proof of theorem
14 in the inert case.

Remark. The main obstruction to generalize the above proof to number
fields of degree larger than 2 seems to be showing that M- (x, Vx- log x, oo)
is of order o(~r(x)).
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5. Conclusion of the proofs of theorems 1 and 4

First we proof theorem 1 for the ’degenerate’ cases. If a is a root
of unity, the set S+ has zero density by proposition 2a and theorem 1 is
proved by defining ca = 0. Similar, if we define c- = 0 in case a and 1ii are
multiplicatively dependent, theorem 1 follows from proposition 2b.

In all other cases we can use theorem 14: if GRH holds then the sets
S+ and S- have a density. To complete the proof of theorem 1, we have to
show that the infinite sums in theorem 14 are equal to rational multiples of
certain Euler products. Theorem 1 follows from the following more precise
theorem.

Theorem 16. Let f be defined as in proposition 10, let t be the order of
the torsion subgroup of and let r be the rank of (a, a~. Assume
GRH holds.

a. If a is not a root of unity, then

b. If a and a care multiplicatively independent, then

Proof. a. As a is not a root of unity, we can apply the first part of
theorem 14 to find the following expression for the density of ,S+:

Here we used that p vanishes on integers which are not squarefree. As
the rank r is at least 1, the right hand side is absolutely convergent by
corollary 11. To obtain an Euler product for this sum we proceed as follows.
Let k and d be integers, with k prime to 2/ and d a divisor of 2 f . By
proposition 10e we have the equalities (Ldk : K] = [Ld : K~ ~Lk : K] and
[Lk : K] = K]. Using these relations and equation (11) we find
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the following formula:

By proposition 8a, the degree of equals IT (l --1) for all primes 1 t 2 f t.
If we substituting this into the formula above, this completes the proof in
the split case.
b. By the second part of theorem 14 we obtain

Recall that c(n) denotes the cardinality of the set (a E Gal(Ln/Q) :
C I K 0 = id}. If Ln and L"b are linearly disjoint over K, we have the
isomorphism

l(o,, r) E Gal(LnI Q) x Gal(Lm/Q) : alK = 

and hence the equality c(nm) = c(n)c(rrz). Arguing as in the split case and
using equation (12), we find the following formula for the density of S-

As by assumption a and a are multiplicatively independent, proposition
8b implies c(I)/[Ll : K] = 2/ (1 (1 - 1)) for all primes 1 f 2ft and we are
done. 0

The proof of theorem 4 is highly similar to the above proof. Let K be a

quadratic field not contained in for all primes I. Denote the torsion
subgroup of K* by PK. Assume that a and cf are multiplicatively indepen-
dent, that K*/(~K, a, a) is torsion free and that 2 ramifies completely in
L2 /Q. This last assumption implies by proposition lOf that the fields 
are linearly disjoint over K. With theorem 14, we find that GRH implies
the following:
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Using proposition 8 we find for all odd primes I the equalities [Li : K] =
12(1 - 1) and c(l)/[Ll : K] = 2/1(1 - 1). If va and J7 generate the
same quadratic extension of K, then aa = ~32 for somme 8 E K*. As a
and a are multiplicatively independent, the element # is a non-trivial 2-
torsion element in K* / (p K , a, 1ii) . Therefore and K(J7) /K are
different quadratic extensions and L2 is of degree 4 over K. If we substitute
all field degrees in the first formula above, this proves the formula for 
in theorem 4. To obtain the formula for 8(S-) we still need the Euler
factor at 1=2. As NK~Q (a) is not a square in K*, proposition 6b yields
8(S2 ) = 1. Using (10) we find

An efficient method to approximate the Euler products in theorem 4 is
explained in [6].

6. Proof of theorem 3

We can decide ’at a finite level’ whether one of the sets S’+ or S- has
zero density.

Proposition 17. Let f be defined as in proposition 10, and de fine the sets

= n’12! st S¡. Assume GRH holds. If a is not a root
o f unity then:

If a and a are multiplicatively independent and a is not a cube in K* then:

The implication from teft to right are unconditionally true.

Proof. The implications from left to right are trivial as Sz contains S+
and contains S-. If GRH holds and a is not a root of unity, the density
of S+ is given by (23). The fact that a is not a root of unit implies that
r is at least 1 and hence the infinite product in (23) is non-zero. Using
proposition 8a and formula (9), we find that the product over the primes
11 : l { t} in (23) is also non-zero. Here we use that if K is equal to
(~ (~3 ), then f is divisible by 3. Hence 6(S+ ) is zero if and only if b ( S f ) is
zero.

The second equivalence in the proposition follows in a similar way by
using the formula (24) and proposition 8b. D

The non-vanishing of the density of one of the sets S f or is equivalent
with the existence of an element in with certain properties. To
be more precise, the combination of proposition 5 and Chebotarev’s density
theorem yields the following proposition.
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Proposition 18. Let n &#x3E; 2 be an integer.
a. The set Sn has non-zero density if and only if there exists Q E 

with = id and alL, :A id for all primes I dividing n.
b. The set Sn has non-zero density if and only if there exists Q E Gal(Ln/Q)

with O’IK 0 id and &#x3E; 2 for all primes 1 dividing n.

Proposition 5 and Chebotarev’s density theorem also imply that if st has
zero density then it is a finite set. Namely, suppose is an infinite set

and has density 0. Then there exists a prime PESt that is unramified in
Let p E Gal(L2/IQ) be the Frobenius automorphism of a prime

above p in L2 f. The set of rational primes whose Frobenius class is the con-
jugacy class of p, is a subset of Si and has positive density, contradicting
the assumption 6(Si) = 0. A similar observation holds for the set S2/.

Under some mild restrictions on a, we know by proposition 8 that both
st and Sl have positive density for all primes I. Hence, for all primes 11 2 f
there exists ol E Gal(LI/Q) with the properties as stated in proposition 18.
If we want to prove that st or S2 f has non-zero density, we have to glue
the different elements al E to one element in Gal(L2f/Q). We
use proposition 12 to decide whether this is possible.

Proof of theorem 3a. First we assume that K is not equal to Q((3) and
that a does not satisfy any of the properties in proposition 2a; a is not a
root of unity nor a square in K*. We will show that S+ has zero density
if and only if the second statement of theorem 3a holds. Denote by f the
conductor of L2b/Q. By propositions 17 and 18, the set S+ has non-zero
density if and only if there exists a E Gal(L2 f/K) such that aL, :A id for
all primes 1 dividing 2 f . Let e be the exponent of L2b/Q, and for each
prime 1 2 f define Mi as the maximal subfield of L, that is abelian over Q
of exponent dividing e. If we apply proposition 12 with n = 2 f we find

with M the compositum of the fields Therefore, the set S+ has
non-zero density if and only if there exists for each prime 1 2 f an element
al E Gal(MLIIK) that is non-trivial on Li and such that all Q~ agree on
M.

The primes 1 1 2 f for which L, is not contained in M do not cause

any trouble: for arbitrary T E Gal(M/K), there exists a Q~ E Gal(MLl/K)
such that = T and id. Namely, if I is such a prime we can
choose a non-trivial element pl E for which PlIL,nM = TIL,nM.
The unique 7~ E Gal(M Lll K) that extends both pl and T has the desired
property.
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Let T be the set of primes 1 for which Li C M, that is, for which LI/Q
is abelian of exponent dividing e. If T is non-empty define the subfield E
of M as the compositum of the fields if T is empty let .E be equal
to K. By the discussion above, the set S+ has non-zero density if and only
if there exists T E Gal(E/K) that is non-trivial on Li for all 1 E T.

The existence of such an element T depends on the set T . As Q ( (,)
is contained in Li and e divides 4, we find that T is a subset of {2,3,5}.
More precisely, we have the following equivalences

If T is empty there is nothing to prove. The assumptions that a is not a
square in K*, and that K is not of discriminant -3, imply that there exists
a non-trivial element Tl E Gal(Ll/K) for all l in T. If T has at most 2

elements, the existence of T is guaranteed. Indeed, for T = we can take
T = T as above. In case T = has cardinality 2, the argument is as
follows. If Lit and Ll2 are linearly disjoint over K, the elements T‘1 and Tl2
determine an element T with the desired properties. If not, any extension
T of a non-trivial element in Gal((Lil to E = Lit Ll2 will do.

Now we assume that T has cardinality 3, so E is equal to L3o. Because
of (25), the field L2b is of exponent 4 and equals L2 = Furthermore
a is a cube in K((3)* and a fifth power in K(~5)*. As we showed in the
proof of proposition 8a, this is equivalent with a being a fifteenth power in
K*. If there exist l1, 12 E T with 11 ~ l2 and Lll = L12, an argument as in
the case #T = 2 above shows the existence of T. Therefore, we assume in
addition that L2, L3 and L5 are pairwise different and all abelian over Q of
exponent dividing 4. The extensions L2/K and L3/K are both quadratic,
so there exists a unique element a E Gal(L6 /K) that is non-trivial on both
L2 and L3. The group Gal(L6 /K) is isomorphic to Klein’s four group, so
apart from L2 and L3 there is a unique third quadratic extension of K
inside L6. If L5 is not contained in L6, the element a can be extended to
an automorphism T of L30 which is non-trivial on L5 and is

positive. On the other hand, if L5 is contained in L6, then L5 is this third
quadratic extension of K inside L6 and aiLs is automatically trivial. In
this case S+ has zero density. The field L30 = L6 is of degree 8 over Q,
exponent 2 over K and contains both (3 and ~5. This yields the equalities
E = Q(~’15) and K = Q(v’5-) and forces L2 = to be equal to the
maximal real subfield of Q((15).
To complete the proof of theorem 3a, we have to deal with the case K =
Q((3). Assume that K is equal to Q((3) and that a does not satisfy
any of the properties in proposition 2a. We need to show that 6(S+) is
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positive. Let T be the set of primes I for which is abelian of exponent
dividing 6. As Q((i) is a subfield of L~, the set T is contained in {2,3,7}.
Denote by E the compositum of the fields We will show that there
exists T E Gal(E/K) that is non-trivial on Ll for all 1 E T. Using similar
arguments as in the Q(~3), this implies that 6(S+) is positive.
We assume that T has cardinality 3, and leave the other cases to reader.
Because 3 is in T, the field L3 is abelian over Q and hence is a

cube in K*. As by assumption a is not a cube in K*, the element a/a is not
a cube in K* and L3 = Q(~3, is cyclic over Q of degree 6. Denote
by F3 the unique cubic subfield of L3. Furthermore, let F7 be the unique
cubic subfield of L7 =Q((3,(7) and let ai E Gal(F3F7/Q) be non-trivial on
both F3 and F7. As a is not a square in K*, there is a non-trivial element
0"2 E Gal(L2/K). Because the fields L2 and F3F7 as linearly disjoint over
Q, there exists a unique o E Gal(L2F3F7/K) extending both ai and Q2.
Any extension T of a to E = L2L3L7 is non-trivial on L2, L3 and L7. 0

As we noted before the proof of theorem 3a, the set S- has non-zero density
if certain elements in with I ranging over the prime divisors of
2 f , can be ’glued’ to one element in Gal(L2 j /Q) . To decide whether this is
possible, we first make a more detailed analysis of the situation at a single
prime t.

Proposition 19. Assume K is not equal to Q((3) and that a does not
satisf y any of the conditions of proposition 2b. For each prime I, let M, be
the maximal subfield of Li that is of exponent 2 over Q, and let ki be the

quadratic field. defined in the Introduction. For each p E Gal(MI/Q) with
id the following holds:

p can be extended to an automorphism of L, of order larger than 2

Proof. For odd 1 the field Mi is of degree 2 or 4 over Q, according to
whether K is contained in Q((I) or not. In both cases, is

cyclic of order (l - 1)/2. Therefore, if l is larger than 5 then any p can
be extended to an automorphism of K(CI) of order larger than 2. Namely,
suppose p is an extension of p to of order 2. The product of p with a
generator of Gal(K(I)/MI) yields an extension of p of order larger than 2.

Now assume I = 5 and denote by k the subfield of M5 = K(,15-) fixed
by p. If k is not equal to the group Gal(K((5)/k) is cyclic of order
4 and a generator of this group extends p. Therefore, we suppose that k
equals Q(B/5). As p is non-trivial on K, this implies in particular that K
is not Q( ý’5). In case a is a fifth power in K*, the field L5 coincides with
K(~5), which is of exponent 2 over Q(v/5-) and any extension of p to L5 will
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have order 2. We claim that if a is not a fifth power then there exists an
extension of p to L5 of order larger than 2. To prove the claim, choose a
field N5 E such that is non-trivial. This is possible
because if both extensions are trivial then both NK/Q(a) and a liik are fifth
powers in K* and so is a. In diagram 1 below, we have drawn all fields
involved.

diagram 1 diagram 2

As N5 is Galois over Q, it is cyclic of degree 5 over N5 n K (~5 ) . Therefore,
the field KN5 is cyclic of degree 10 over N5 n K((5). Any extension of
a generator of Gal(KN5/(N5 n K((5)) to L5 has order larger than 2 and,
as such an extension is trivial on Q(v’5) and non-trivial on K, extends p.
This concludes the proof of the claim.

By assumption K is not equal to (~(~’3), so M3 = K((3) is of degree 4
over Q. The fixed field k of p is equal to either C~(~3) or Q(~/20133D), where
D denotes the discriminant of K. As in corollary 7, let N3,p be the unique
field in that contains the fixed field k of p. In diagram 2 we have
drawn the fields involved. If is non-trivial, and therefore cyclic of
degree 3, the group is cyclic of degree 6. An extension of
a generator of this group to L3 extends p and is of order larger than 2.
On the other hand, if is trivial then all extensions of p to L3 have
order 2 by corollary 7. The extension is trivial if either k equals
Q((3) and is a cube in K*, or k equals C~( -3D) and a/a is a
cube in K*.

For the prime 1 = 2 we can copy the proof of proposition 6b. 
is a square in K*, the extension L2/Q is cyclic of degree 4, the field M2
equals K and any extension of p has order 4. Otherwise, M2 is equal to

and, as both L2/K and are of expo-
nent 2, the element p can be extended to an element of order larger than 2
if and only if p is non-trivial on D

Proof of theorem 3b. First we assume that K is not equal to Q((3) and
that a does not satisfy any of the properties stated in proposition 2b; a
and a are multiplicatively independent, a is not a cube in K* and NK~Q (a)
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is not a square in Q*. Let f denote the conductor of Because
of proposition 17, it is sufficient to prove that the second condition in
theorem 3b is equivalent with the property that is zero. Again using
proposition 17, we find that the set has zero density if and only if the

possibly smaller set has zero density.
For each prime I, let ki be the quadratic field defined in the introduc-

tion. Let E denote the compositum of K, k2, l~3 and k5. First we prove the
following equivalence,

(26) 0 4==:~, 
there exists an automorphism T of E

B ~ ~~~3°f ~ ~ ~ ~ that is non-trivial on K, k2, k3 and k5.

By proposition 18, the left hand side of (26) is equivalent with the
existence of 0’ E Gal(L3o//Q) such that alK :A id and &#x3E; 2 for
all primes 1 dividing 30 f . If such a a exists, the element T = has the
desired properties by proposition 19, and the implication from left to right
is proved.

Now we assume that there exists a r e Gal(E/Q) which is non-trivial
on .K, k2, k3 and k5. We will lift T to an element a E Gal(L3o f/Q) with the
properties as in the last paragraph. The construction of a depends on the
field L2. By assumption NK~Q(a) is not a square in Q*, hence Gal(L2/Q)
is either dihedral of order 8 or cyclic of order 4.

First we assume is dihedral of order 8 and define M as the

compositum of the fields with Mi the maximal subfield of Lj that
is of exponent 2 over Q. Note that E is contained in M. By proposition 12
the fields are linearly disjoint over M. Lift T to an automor-

phism of M, which we again denote by T. By assumption is not equal
to the identity for all primes 1 dividing 30 f . We can lift TIMI to an element
T E Gal(LI/Q) of order larger than 2 by proposition 19. As the intersection
M n Li equals Ml, the elements T and T have a common extension to MLI .
By the isomorphism (13) we find that the elements (Tl)lI301 determine an
element a E Gal(L3o f/Q) with the prescribed properties.

If L2/Q is cyclic of order 4 we define fo as the maximal odd divisor
of 30 f and let M be the compositum of the fields where again
M, denotes the maximal subfield of Li that is of exponent 2 over Q. By
proposition 12 we find the fields to be linearly disjoint over M.
By the same argument as in the last paragraph, we find ao E 
which 0’0 ILL or order laxger than 2 for all primes 11 ( f o. Let a be an extension
of ao to L3o f. Because a is non-trivial on the unique quadratic subfield K
of L2, the restriction aIL2 automatically has order 4. We conclude that a
has the desired properties, and this concludes the proof of (26).
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To conclude the proof of theorem 3b in the case Q ((3), we show
that there exists T E Gal(E/Q) as on the right hand side of (26) if and

only if the second statement in theorem 3b does not hold.
First assume there exists T E Gal(E/Q) as in (26) and let F C E be the

compositum of three different quadratic fields among K, k2, k3 and k5 . If F
is of degree 4, then Gal(F/Q) is isomorphic to Klein’s four group and F has
exactly three quadratic subfields. However, the element TIF E Gal(F/Q)
is non-trivial on all of these subfields, which is clearly impossible.

Now we assume that the second statement in theorem 3b does not
hold and we prove that there exists T E Gal(E/Q) that is non-trivial on
K, k2, k3 and k5. Let X be the set of characters of these quadratic fields.
The non-empty set X generates the character group of Gal(E/Q), and has
cardinality at most 4. It is sufficient to show that there exists T E Gal(E/Q)
on which all characters in X are non-trivial. We view the character group
of Gal(E/Q) as a F2-vector space and choose a maximal F2-independent
subset S C X. As S is an F2-basis for the character group of Gal(E/Q) ,
there exists a unique T E on which all characters in s are non-
trivial. We claim that all characters in X are non-trivial on T. If X equals S,
there is nothing to prove. Otherwise, all characters in X can uniquely be
written as a product of at most three characters in s. The number of
characters in such a product is not 2, as this would imply that there are
3 distinct fields among k2, k3, k5 and K, whose compositum is of degree 4.
If a character in X is the product of one or three elements of S, then it is
indeed non-trivial on T. This proves the claim and the existence of T with
the required properties.

Finally we assume that K is equal to Q((3) and that a does not satisfy any
of the properties stated in proposition 2b. Let f be the conductor of Lab and
let n be the product of the primes in the set {2,3,5,7,13} U {g : qlf prime}.
We will prove the existence of an element a E Gal(Ln/Q) that is non-trivial
on K and for which alL, has order larger than 2 for all primes lln. This

implies by proposition 18 that S~ has positive density. Because S; is

contained in I proposition 17 implies that 6(S-) is positive. As the

second statement in theorem 3b does not hold, this completes the proof of
theorem 3b.

For each prime l, let Mi be the maximal subfield of Li that is abelian
of exponent dividing 6 over Q. In particular we have the equalities M2 =

L2b = K(vNK/Q(a» and M3 = Lab = K( 3 a~a). Denote by M the

compositum of the fields To construct an element o, E Gal(Ln/Q)
with the above described properties, we first fix a specific automorphism T
of M, which we then extend to Ln.

If 1 - 1 mod 3, the field Mi contains the unique cubic subfield Fd of
Q(~l). As by assumption is not a cube in K* , the field M3 also contains
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a unique cubic field F3. Let F be the compositum of F3, F7 and F13. We
claim that there exists an automorphism Tl of F that is of order 3 on each
of these cubic fields. To prove the claim we assume that F3 is contained
in the compositum F7F13, as otherwise the existence of Tl is trivial. As F7
is disjoint from F13, the group Gal(F/Q) is isomorphic to Z/3Z x Z/3Z
and hence has four subgroups of order 3. It follows that there exists Tl E

Gal(F/Q) outside the union of Gal(FIF3), Gal(F/F7) and Gal(F/Fl3),
which proves the claim. Because there is no element in K of norm 5, the
field is different from the maximal real subfield Q(vNK/Q(a» of
M2 and hence MZ and Q(av/l) are disjoint over Q. Using that NK~Q(a) is
not a square in Q*, it follows that there exists r2 E Gal(M2 (%/l’) /Q) that
is non-trivial on K, Q(vNK/Q(a» and 

As the subfields F and M2 (%/l’) of M are linearly disjoint, there exists
T E Gal(M/Q) extending both T1 and T2. Fix such an element T. We
claim that T can be extended to a E Gal(LnIQ) such that &#x3E; 2

for all primes By proposition 12 it suffices to construct for all primes
lln elements Q~ E Gal(MLI/Q) such that alim = T and &#x3E; 2.

For primes 1 E {2,3,5,7,13} any extension ol E Gal(MLI/Q) of r has
the property &#x3E; 2. For I E {3, 7,13} this follows from 
3. Because T is non-trivial on Q(v’5), any extension of to Q((5)
will have order 4. As Q(~5) is contained in L5, we find that any extension
Q5 of T to ML5 will have the property ord(a5lL,) &#x3E; 2. The corresponding
property for 1 = 2 follows from the fact that L2/Q is dihedral of order 8
and that T is non-trivial on K and 

Now let 1 g {2,3,5,7,13} be a prime divisor of n. The extension
is cyclic of degree (I - 1, 6). This degree is larger than

2 by the assumptions on 1. Therefore, the element TIM, has an extension
TL E Gal(LI/Q) of order larger than 2. As MLI is the disjoint compositum
of M and Li over ML, there exists a unique al E Gal(MLI /Q) extending
both T and ri. The element a, has the desired properties. D

7. Examples
In this section, we compute for four values of a the density of the sets

S+ and S-. In the first 2 examples, these densities vanish. For the a’s
in the last 2 examples, we give explicit values of ca and c., by counting
automorphisms with certain properties.

Example 1. For a = eS+iv’5)l5, both S+ and S- have zero density.
This is just an easy corollary of theorem 3. The fact that a is a cube in
K = implies a(S-) = 0. As is the maximal real subfield of

Q(~15), the second part of theorem 3a gives 6(S+) = 0.
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Example 2. For a = -150 + 57B/7 the set S- has zero density.
The field K = Q (a) = has discriminant D = 4 - 7. We can write

a = with 7r = 2 + ý7 a generator of a prime above 3 in K, so
a is not a cube in K*. As the norm of a is not a square in K*, the
field L2 = fl) = ~) is dihedral of order 8 over Q and
the definition in the introduction gives k2 = Q(.VNK/Q(Ot» = 
Because of the equajity = (~)3, we have k3 = Q(~/-3 - 7). We find
that K, k2 and k3 are the three quadratic fields in a V4-extension of Q, so
6(S~ ) = 0 by the second part of theorem 3b.

Example 3. Let /3 = and a = (2-~)(1+~(3-2~(1+2~)-~ E
K = Q( 77). If GRH holds then

The elements 7r17 = 2 - @ and 7Ti7 = 1 + {3 generate the two primes above
17, and lr73 = 3 - 2{3 and if73 = 1 + 2# generate the two primes above 73.
We have

so a and a are multiplicatively independent, and the following relations
hold:

- - e::

~ m~ u "1Y"73,

Let t denote the order of the torsion subgroup of K* /(a, 1i) , and let f be
the conductor If we assume GRH, theorem 16 gives the following
formula for the density of S-:

First we compute the density of S2 f. As NK/Q(a) is not a square in K*,
the extension is dihedral of order 8 and LZb = ~/17-73).
We find the conductor f = 7 . 11 . 17 . 73. Chebotarev’s density theorem
and proposition 5b give the equality

where

G(2 f ) = {Q E Gal(L2//Q) : Ol K =,4 id and id for all 

To compute #G(2 f ), we argue as in the proof of theorem 3b. For each

prime l, let M, be the maximal subfield of Li of exponent 2 over Q, and



321

define M as the compositum of the fields If 1 is an odd prime,

we have Mi = K( ( ‘1) t), a field of degree 4 over Q. With M2 = Lab as
above, this yields the equality

a field of degree 16 over Q. The fields are linearly disjoint over M
by proposition 12. Therefore, the elements of G(2 f ) correspond bijectively
to the tuples where ji E Gal(MLI/Q) is an element of order larger
than 2 that is non-trivial on K and for which Ollm is independent of l. To
count for each prime 1 I 2 f the number of such fii, we fix p E Gal(M/Q)
with PIK 54 id. As Mi is the maximal exponent 2 extension in Ll, the
fields Li and M are disjoint over Mi. Therefore, an element 01 as above, is
uniquely determined by p and an element pi E Gal(LI/Q) of order larger
than 2 with = pJMr Trivially, the number of extensions of to L,
is [L3 : MI]. The above discussion leads to the following formula:

with, for each prime 1 2 f and p E Gal(M/Q) that is non-trivial on K,
el(p) = Gal(LI/Q) with PllMl = PIMl and pf = id}.

In other words, el ( p) counts the elements of the set Cl, defined in corollary 7,
for which the action on Mi is given by p.

First we compute the degrees [Li : K~. The field L2 is of degree 4 over
K. For odd primes 1, we use proposition 8. To find 1-torsion in K* / (a, 1i) ,
we assume there are integers a and b, such that aaab = "I’ for some y E K*.
If we take the norm to Q we find

From (27), we know that NK/IQ (a) = 73 is a 7-torsion element in K*/(a, 1i) .
As a is not a 7-th power in K*, we conclude that L7 is of degree 7 over
I~(~7). With the definition of N71 and N72 from proposition 6, we find

If 7, the equality (31) implies a - -b mod l, so that 2 is an l-th power
in K*. From (27) we see that 1 equals 5. As NK~Q (a) is not a 5-th power
in K*, we find [L5 : K(~5)~ = 5 and

For odd primes 1 # 5, 7, the group K* /(a, 1ii) has no 1-torsion and proposi-
tion 8 yields 

- - -- - -
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As MIIK is quadratic for all primes 1, we can now compute the degree of
L2 f with f = 7 ~ 11 ~ 17 - 73 using the following formula:

We use proposition 19 to limit the number of possible p’s in (30): if for some
p E Gal(M/Q) there exists a prime 1 2 f for which Plkl is trivial, then all
extensions of p to Li have order 2. For these p, we have el(p) = [Li : MI],
and the contribution to G(2f) is 0. As 3 and 5 do not divide 2 f , the only
fields involved are k2 = = Q(Vl7’ 73) and K. In the table
below we list the 4 elements of Gal(M/Q) that are non-trivial on both K
and k2. A plus sign indicates trivial action, a minus sign the non-trivial
action.

We are left with computing the numbers e1 (p) for 1 2 f and the 4 elements p
in the table. As in the proof of proposition 6b, the fact that these p are non-
trivial on both K and k2, implies that all extensions of pIM2 to L2 have order
4, thus e2(p) = 0. For primes I - 3 mod 4 we have = Q, so that

pim, has an unique extension #i to = K(CI) of order 2. Let Ni,p be
the unique field in that contains the fixed field of Pl. According
to corollary 7 we have [Li : KNl,p]. For primes l - 1 mod 4 we

have mi n Q((j) = Q(0) and we distinguish two cases. If p is non-trivial
on there is no extension to K(~’l) of order 2, so that = 0. On

the other hand, if p is trivial on there are precisely 2 extensions to
K(CI) of order 2. Corollary 7 implies ei (p) = [Li : + [Li : KN,2]. If
we substitute the degrees that we computed above, we find the following
table.

. I ..

Now we have all the information to compute (29). We find:
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As we saw above, the prime divisors of t, the order of the torsion subgroup
of K*/(a, a), are 5 and 7. As 7 divides f , we only need c(5) / [L5 : K] in
order to compute (28). Corollary 7 and (32) give c(5)/[L5 : K] = 3/10.
Substituting the values for 6 (Sgj ) and c(5) / [L5 : K] in (28) yields the result.

Example 4. Let a = (3 . 23 . (-13"t3v’Ï3»3 E K = Q(v’13). If GRH holds2
then 

, -

The element -13 ~3 13 is of norm 13. We find that N K/Q (a) is a square in
K*, but not a square in Q*, so the extension L2/Q is cyclic of degree 4. For
each prime l, let Mi denote the maximal abelian subfield of Li of exponent
dividing 4. The extension M13 / Q is cyclic of degree 4, and L2 = M2 is
the unique subfield of M13(v/-3 --23) that is cyclic of degree 4 over Q and
ramified above 3, 13 and 23. Therefore, the conductor f of L2/Q is equal
to 3 - 13 - 23. To compute 6(S+) we use formula (23). By Chebotarev’s
density theorem and proposition 5a we have

where

G(2 f ) _ {Q E a I Li 0 id for all 
Let M be the compositum of the fields Using the same arguments
as in example 3, we find that the elements of G(2 f ) correspond bijectively
to the tuples where pi E Gal(Ll/K) is non-trivial and such that

determine an unique p E Gal(M/K). To compute #G(2 f ), we
fix p E Gal(M/K) and compute the number of tuples corresponding to p.
First we note that M2 equals L2 and, as a is a cube in K*, the field L3 is
equal to M3 = K(~3). Therefore, we may assume that the restrictions pIM2
and PlM3 are non-trivial. The field M is the disjoint compositum of the
quadratic extensions M3, M13 and M23 of K and M2 is not contained in the
compositum of any two of these fields. We conclude that we can restrict to
two possible p E Gal(M/K).

I -- I -- I --

For each prime 1 2 f and p E ~ p(1), p(2) ~, the number of extensions of
plMl to a non-trivial element pi E Gal(Li /K) is [Ll : or [Ll : MI],
depending on whether pim, is trivial or not. Using that the quotient 
is the sixth power of a fundamental unit in K, we find the elements a and
a to be multiplicatively independent. Moreover, the group K* / (a, a) has
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no 1-torsion, for all primes 1 &#x3E; 5. With proposition 8, we are now able to
compute #G(2 f ) and [~2/ : Q]:

Substituting this into (23) yields the result.
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