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Prime divisors of the Lagarias sequence

par PIETER MOREE et PETER STEVENHAGEN

RÉSUMÉ. Nous donnons une solution à un problème posé par
Lagarias [5] en 1985, en déterminant sous GRH la densité de
l’ensemble des nombres premiers qui sont des diviseurs de ter-
mes de la suite définie par x0 = 3, x1 = 1 et la relation
de récurrence xn+1 = xn + xn-1. Cela donne le premier exem-
ple d’une suite de récurrence d’ordre 2 qui n’est pas ’à torsion’
pour laquelle on sait déterminer la densité associée des diviseurs
premiers.

ABSTRACT. We solve a 1985 challenge problem posed by La-
garias [5] by determining, under GRH, the density of the set of
prime numbers that occur as divisor of some term of the sequence

defined by the linear recurrence xn+1 = xn + xn-1 and
the initial values x0 = 3 and x1 = 1. This is the first example of
a ’non-torsion’ second order recurrent sequence with irreducible
recurrence relation for which we can determine the associated den-

sity of prime divisors.

1. Introduction

In 1985, Lagarias [5] showed that the set of prime numbers that divide
some Lucas number has a natural density 2/3 inside the set of all prime
numbers. Here the Lucas numbers are the terms of the second order recur-
rent sequence defined by the linear recurrence = xn + xn-1
and the initial values xo = 2 and xl = 1. Lagarias’s method is a quadratic
analogue of the approach used by Hasse [2, 3] in determining, for a given
non-zero integer a, the density of the set of the prime divisors of the num-
bers of the form an + 1. Note that the sequence + 1 loo 1 also satisfies
a second order recurrence.

Hasse and Lagarias apply the Chebotarev density theorem to a suitable
tower of Kummer fields. Their method of ’Chebotarev partitioning’ can
be adapted to deal with the class of second order recurrent sequences that
are now known as ’torsion sequences’ [1, 8, 11]. For second order recurrent
integer sequences that do not enjoy the rather special condition of being
’torsion’, it can no longer be applied. In the case of the the Lucas numbers,
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changing the initial values into xo = 3 and xl = 1 (while leaving the recur-
rence xn+1 = xn + xn-1 unchanged) leads to a sequence for which Lagarias
remarks that his method fails, and he wonders whether some modification
of it can be made to work.
We will explain how non-torsion sequences lead to a question that is

reminiscent of the Artin primitive root conjecture. In particular, we will
see that for a non-torsion sequence, there is no number field F (of finite
degree) with the property that all primes having a given splitting behav-
ior in F divide some term of the sequence. It follows that Chebptarev
partitioning can not be applied directly. However, it is possible to com-
bine the technique of Chebotarev partitioning with the analytic techniques
employed by Hooley [4] in his proof (under assumption of the generalized
Riemann hypothesis) of Artin’s primitive root conjecture. In the case of
the modified Lucas sequence proposed by Lagarias, we give a full analysis
of the situation and prove the following theorem.

Theorem. Let the integer sequence defined by xo = 3, xl = 1
and the linear recurrence + xn-l- · If the generalized Riemann
hypothesis holds, then the set of prime numbers that divide some term of
this sequence has a natural density. It equals

Numerically, one finds that 45198 out of the first 78498 primes below 106
divide the sequence: a fraction close to .5758.

2. Second order recurrences

Let X = second order recurrent sequence. It is our aim to

determine, whenever it exists, the density (inside the set of all primes) of
the set of prime numbers p that divide some term of X.
We let = be the recurrence satisfied by X, and denote

by f =T 2 - ao E Z[T] the corresponding characteristic polynomial.
We factor f over an algebraic closure of Q as f = (T - a)(T - a).

In order to avoid trivialities, we will assume that X does not satisfy a
first order recurrence, so that aa = ao does not vanish. The root quotient
r = r( f ) of the recurrence, which is only determined up to inversion, is

then defined as r = a/a. It is either a rational number or a quadratic
irrationality of norm 1. In the separable case r ~ 1 we have
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As our sequence is by assumption not of order smaller than 2, we have
0. Denote by

the initial quotient q = q(X) of X. Just as the root quotient, this is a num-
ber determined up to inversion that is either rational or quadratic of norm 1.
The elementary but fundamental observation for second order recurrences
is that for almost all primes p, we have the fundamental equivalence

p divides xn 4=~’ -c/c = (a/a)n EO/pO 
Here 0 is the ring of integers in the field generated by the roots of f . This is
the ring Z if f has rational roots, and the ring of integers of the quadratic
field (a ~X ~ / ( f ) = otherwise. The equivalence above does
not make sense for the finitely many primes p for which either r or q is not
invertible modulo p, but this is irrelevant for density purposes.

In the degenerate case where the root quotient r is a root of unity, it is
easily seen that the set of primes dividing some term of X is either finite
or cofinite in the set of all primes. We will further exclude this case, which
includes the inseparable case r = 1, for which q is not defined.

As we are essentially interested in the set of primes p for which q is
in the subgroup generated by r in the finite group of invertible
residue classes modulo p, we can formulate the problem we are trying to
solve without any reference to recurrent sequences. Depending on whether
the root quotient r is rational or quadratic, this leads to the following.

Problem 1. Given two non-zero rational numbers q and r ~ f1, compute,
whenever it exists, the density of the set of primes p for which we have

q mod p E (r mod p) c FJ§ .

Problem 2. Let r be a quadratic irrationality of norm 1 and C~ the ring of
integers of Q (r). Given an edement q E Q (r) of norm I, compute, whenever
it exists, the density of the set of rational primes p for which we have

q mod p E (r mod p) c (O/pO)*.

The instances of the two problems above where (q mod r) is a torsion ele-
ment in the group Q(r)*/(r) are referred to as torsion cases of the prob-
lem, and the sequences that give rise to them are known as torsion se-
quences. The sequences + studied by Hasse, the Lucas sequence

+ 6-nloo o with E = 1+2 treated by Lagarias and the Lucas-type se-
quences in [8] are torsion; in fact, they all have q = -1. The main theorem
for torsion sequences, for which we refer to (11~, is the following.
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Theorem. Let X be a second order torsion sequence. Then the set 1rx of
prime divisors of X has a positive rational density.

3. Non-torsion sequences

Problem 1 in the previous section is reminiscent of Artin’s famous question
on primitive roots: given a non-zero rational number r ~ ~1, for how
many primes p does r generate the group Fp of units modulo p? (One
naturally excludes the finitely many primes p dividing the numerator or
denominator of r from consideration.) Artin’s conjectural answer to this
question is based on the observation that the index [Fp* : (r)] is divisible by
j if and only if p splits completely in the splitting field Fj = Q((j, rl/j) of
the polynomial Xi - r over Q. Thus, r is a primitive root modulo p if and
only p does not split completely in any of the fields Fj with j &#x3E; 1. For fixed

j, the set Sj of primes that do split completely in Fj has natural density
1/[Fj : Q] by the Chebotarev density theorem. Applying an inclusion-
exclusion argument to the sets 8j, one expects the set S = S, B of

primes for which r is a primitive root to have natural density

J-.

Note that the right hand side of (3.1) converges for all r E Q* B {±1}
as [Fj : Q] is a divisor of cp ( j ) ~ j with cofactor bounded by a constant
depending only on r.
A ’multiplicative version’ of the ’additive formula’ (3.1) for 5(r) is ob-

tained if one starts from the observation that r E Q* B is a primitive
root if and only if P does not split completely in any field Fe with i prime.
The fields Fi are of degree ~(~ 2013 1) for almost all primes and using the
fact that they are almost ’independent’, one can successively eliminate the
primes that split completely in some FE to arrive at a heuristic density

The correction factor cr for the ’dependency’ between the fields Ft is equal
to 1 if the family of fields is linearly disjoint over Q, i. e., if each field

is linearly disjoint over Q from the compositum of the fields Fe with
t 0 fOe If r is not a perfect power in Q*, we have = cr .

It turns out that the only possible obstruction to the linear disjointness
of the fields Ft occurs when F2 = is quadratic of odd discriminant.
In this case, F2 is contained in the compositum of the fields Ft with t
dividing its discriminant. The value of cr is a rational number, and one can
derive a closed formula for it as in [4, p. 220].
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For example, taking r = 5, one has F2 C F5 and the superfluous ’Euler
factor’ 1 - (F5 : 19 at t = 5 in the product IIl(1 - (Fe : Ql-’) is
’removed’ by the correction factor c5 = a 5 = 20

It is non-trivial to make the heuristics above into a proof. As Hooley
[4] showed, it can be done if one is willing to assume estimates for the
remainder term in the prime number theorem for the fields Fj that are
currently only known to hold under assumption of the generalized Riemann
hypothesis. One should realize that only when we consider finitely many t
(or j) at a time, the Chebotarev density theorem gives us the densities we
want. After taking a ’limit’ over all ~, we only know that the right hand
side of (3.1) or (3.2) is an upper density for the set of primes p for which
r is a primitive root. We have however no guarantee that we are left with
a non-empty set of such p. Put somewhat differently, we can not obtain
primes p for which (r mod p) is a primitive root by imposing a splitting
condition on p in a number field F of finite degree; clearly, there is always
some field Fe that is linearly disjoint from F, and no splitting condition in
F will yield the ’correct’ splitting behavior in Ft. A similar phenomenon
occurs in the analysis of non-torsion cases of the Problems 1 and 2. This is
exactly what makes non-torsion sequences so much harder to analyze than
torsion sequences.

If (q mod r) is not a torsion element in (a*/(r), then Problem 1 can
be treated by a generalization of the arguments used by Artin. For each
integer i &#x3E; 1, one considers the set of primes p (not dividing the numerator
or denominator of either q or r) for which the index ~FP : (r)] is equal to
i and the index [Fp* (q)] is divisible by i. These are the primes that split
completely in the field Fi~l = Q( (i, rl/i, ql/i), but not in any of the fields
Fi,j = with j &#x3E; 1. As before, inclusion-exclusion yields a
conjectural value for the density 8i(r, q) of this set of primes, and summing
over i we get

as a conjectural value for the density in Problem 1. Note that is

nothing but the primitive root density 6(r) from (3.1).
The condition that (q mod r) is not a torsion element in (a*/(r) means

that q and r are multiplicatively independent in Q*. In this case Q]
is a divisor of i2j ~ cp(ij) with cofactor bounded by a constant depending
only on q and r. Thus the double sum in (3.3) converges, and under GRH
one can show [9, 10] that its value is indeed the density one is asked to
determine in Problem 1.
As in Artin’s case, one can obtain a multiplicative version of (3.3) by a

’prime-wise’ approach. One notes that the inclusion of subgroups (q mod
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p) C (r mod p) in Fp means that for all primes we have an inclusion

(3.4) (q mod p) g C (r mod p) g
of the ~-primary parts of these subgroups. If we fix both t and the number
k = ordg(p - 1) of factors t in the order of Fp, this condition can be
rephrased in terms of the splitting behavior of p in the number field

More precisely, we have ordP(P - 1) = k if and only if p splits completely
in Q(Cfk) but not in Q((tk+1); of the primes p that meet this condition,
we want those p for which the order of the Frobenius elements over p in

divides the order of the Frobenius elements over

p in By the Chebotarev density theorem, one
finds that the set of primes p with orde(p - 1) = k, which has density ~-k
for k &#x3E; 1, is a union of two sets that each have a density: the set of primes
p for which the inclusion (3.4) holds and the set of P for which it does not.
This ’Chebotarev partitioning’ allows us to compute, for each ~, the density
of the primes p for which we have the inclusion (3.4): summing over k in the
previous argument yields a lower density, and this is the required density
as we can apply the same argument to the complementary set of primes.

For all but finitely many ~, the fields Q((tk+1,ql/tk) and Q((tk+1,rl/tk)
are linearly disjoint extensions of with Galois group for all
k &#x3E; 0. In this case the set of primes p with ordP(P - 1) = k violating (3.4)
has density

Summing over k, we find that (3.4) does not hold for a set of primes of
density ~/(~3 - 1). As the fields

for prime values of £ form a linearly disjoint family if we exclude finitely
many ’bad’ primes t, the multiplicative analogue of (3.3) reads

As is shown in [9], the ’correction factor’ cq,r is a rational number that
admits a somewhat involved description in terms of q and r. In practice,
one finds its value most easily by starting from the additive formula (3.3) .
In the situation of Problem 2, the arguments just given can be taken over
without substantial changes from the rational case when one restricts to
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those rational primes p that split completely in 0. Writing K = Q(r) and

we find that the density of the rational primes p that are split in 0 and for
which we have q mod p E (r mod p) C equals

as in the case of Problem 1, one needs to assume the validity of the gen-
eralized Riemann hypothesis for this result. By (3.7), the computation of
bsplst amounts to a degree computation for the family of fields In

fact, because of the numerator in (3.7) one may restrict to the case
where j is squarefree. As in the case of Problem 1, one finds (under GRH)
that the split density equals

L 

for some rational number cir. The next section provides a typical example
of such a computation. It shows that the value of cir is not as simple a
fraction as the analogous factor cr in (3.2). 

For the rational primes p that are inert in 0, the determination of the
corresponding density &#x3E;inert is more involved than in the split case. The
group in Problem 2 is now cyclic of order p2 - 1, and (q mod p)
and (r mod p) are elements of the kernel

of the norm map, which is cyclic of order p+1. In order to have the inclusion
(3.4) of subgroups of Kp for all primes we fix £ and k = orde(p + 1) &#x3E; 1
and rephrase (3.4) in terms of the splitting behavior of p in the quadratic
counterpart

B-’-7 1 /-t ,

of (3.5). Let us assume for simplicity that t is an odd prime, and that
K is not the quadratic subfield of Q((i). Then the requirement that p
be inert in K and satisfy ordt(p + 1) = k &#x3E; 1 means that the Frobenius
element of p in Gal(K((tk+1)/Q) is non-trivial on K and has order 2£ when
restricted to Let Bk C be the fixed field of the subgroup
generated by such a Frobenius element. Then Bk does not contain K or
(a(~e), and Bk C K((tk) is a quadratic extension. Let ak be the non-trivial
automorphism of this extension. Then ak acts by inversion on and
the norm-1-condition on q and r means that ak also acts by inversion on q
and r. The Galois equivariancy of the Kummer pairing

- ,,, , ,,,
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shows that the natural action of Qk on is

trivial, so is abelian over Bk. It is the linearly disjoint compositum of
the cyclotomic extension Bk C and the abelian extension

For almost all the group is isomorphic to Z/2fZ x 
Just like in the rational case, we want those primes p that have splitting

field Bk inside and for which the order of the Frobenius elements

over p in Gal(Bk(ql/lk + divides the order of the Frobenius

elements over p in By the Chebotarev partition
argument, we find again that for a ’generic’ prime ~, a fraction £/(£3 -1) of
the primes p that are inert in O violates (3.4). Here ’generic’ means that t
is odd and that has degree 2t3k(t - 1) 1. Under GRH, one can
again deduce that the inert density 6inert (q, r) equals a rational constant
c- times the infinite Euler product occurring in (3.6) and (3.8).

In general, there are various subtleties that need to be taken care of in
the analysis above for £ = 2, when 2-power roots of q and r are adjoined to
K or K(~2n). We do not go into them in this paper. In the example in the
next section, we deal with these complications by combining a simple ad
hoc argument for a few ’bad’ f with the standard treatment for the ’good’ ~.

4. The Lagarias example

We now treat the explicit example of the modified Lucas sequence which
is the subject of the theorem stated in the introduction. The roots of the
characteristic polynomial X2 - X - 1 of the recurrence are 6- = 1+2 and
its conjugate 6" = 1-2V5. The initial values xo = 3 and xl = 1 yield an
initial quotient q = 1-3E of the sequence. As 7rll = 1 - 3e E 0 = Z ~e~ has
norm -11, we find that we have to solve Problem 2 for

We set 1 I as in the previous
section.

4.1. Lemma. For with
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Proof. As K = Q( J5) is the quadratic subfield of (a(~5), the field 
has degree 2cp(ij) over Q if 5 does not divide ij and degree cp(ij) if it does.
As q = is a quotient of two non-associate prime elements in 0 and7rl 1

E is a fundamental unit in C, the polynomials and r are

irreducible in K[X] for all i, j E Z&#x3E;1 by a standard result as [6, Theorem
VI.9. 1]. Moreover, the extension K C generated by a zero of Xi_q
is totally ramified at the primes of K lying over 11, whereas the extension
K C generated by a zero of XV - r is unramified above 11. It
follows that K C K(qlli, is of degree i2j for all i, j E Z&#x3E;l.
The intersection is contained in the maximal abelian

subfield Ko of K (ql/i , rl/ij), which equals

One trivially computes Ko n and the lemma follows. 0

We will need the preceding lemma only for squarefree j. In this case, we

simply have t = #~d E {5} : dlijl for odd i.
If we substitute the explicit degrees from Lemma 4.1 in (3.7), we find

that the split density for our example equals

where is as in Lemma 4.1. If we set

then the expression above may be rewritten as

It is elementary to show [9, Theorem 4.2] that S’m~n is the rational multiple
- A ~ 0

of the universal constant

arithmetic now yields the value

for the density (under GRH) of the primes p - fl mod 5 dividing the
Lagarias sequence. Numerically, one finds that 20416 primes out of the
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78498 primes below 106 are split in K and divide our sequence: a fraction
close to .2601.

For the inert primes of K, which satisfy p - ±2 mod 5, we have a closer
look at the ’bad’ primes 2, 5 and 11. As for the rational problem, we define
the extensions

..... , A--...-, A_--

for primes and note that, by Lemma 4.1, the family consisting of the
extensions Q2Q5Qll and of I~ is linearly independent over K.

Our first observation is that for the inert primes p, the order p + 1 of
the group Kp in (3.9) is never divisible by 5. Condition (3.4) is therefore
automatic for the prime = 5, and we can disregard the splitting behavior
of p in SZ5.
We next observe that for inert p, the element r = -ê2 satisfies

For primes p - 3 mod 4, this shows that (r mod p)2 is the 2-Sylow subgroup
of np, so that (3.4) is again automatic for £ = 2. When we now impose that
the inert primes congruent to 3 mod 4, which form a set of primes of density
1/4, have the correct splitting behavior in the extensions Of for £ # 2, 5,
we are dealing with a linearly disjoint family and find (under GRH) that
the set of these primes has density

We next consider the inert primes p - 1 mod 4. For these p, the congruence
(4.3) shows that (r mod p) has odd order in rp, so (3.4) is satisfied for £ = 2
if and only if the order of q = -7rfi /1 1 in rp is also odd. As rp is a cyclic
group of order p + 1 - 2 mod 4, the order of q = (q mod p) is odd if and
only if q is a square in ~p. Let x E O/pO be a square root of q. If x is in

r,p, i. e., if x has norm 1 in Fp, then its trace x + 1/x is in Fp, and we find
that

is a square modulo p. If x is not in ~p, then x has norm -1 in Fp and

is a square modulo p. As 5 is not a square modulo our inert prime p, we
deduce

(4.4) (q mod p) has odd order in r~P T# - 1 1 is a square modulo p.

If p satisfies the equivalent conditions of (4.4), then p is a square modulo
11 by quadratic reciprocity, and we have 11 + 1. It follows that in this
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case, (3.4) is satisfied for £ = 2, 5 and 11. Thus, the set of inert primes
p - 1 mod 4 satisfying the quadratic condition (4.4) is a set of primes
of density 1/8, and the subset of those p that have the correct splitting
behavior in the extensions Qt for £ # 2, 5,11 has (under GRH) density

Adding the fractions obtained for the inert primes congruent to 3 mod 4
and to 1 mod 4, we obtain

Numerically, one finds that 24781 primes out of the 78498 primes below
106 are inert in K and divide our sequence: a fraction close to .3157.
The sum bplit + ðinert is the value 

mentioned in the theorem in the introduction.
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