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Diophantine m-tuples and elliptic curves

par ANDREJ DUJELLA

RESUME. Un m-uplet diophantien est un ensemble de m entiers
naturels non nuls tel que le produit quelconque de deux d’entre
eux augment6 de 1 est un carr6 parfait. Dans cet article, nous nous
int6ressons a certaines propri6t6s de courbes elliptiques d’6quation
du type y2 = (ax + 1)(bx + 1)(cx + 1), ou est un triplet
diophantien.

Nous considérons en particulier la courbe elliptique Ek d6finie
par 1’6quation y 2 = (F2kX + 1) (F2k+2X + 1) ’+" 1), of k &#x3E; 2
et Fn d6signe le n-eme nombre de Fibonacci. Nous montrons que
si le rang de Ek est 6gal a 1, ou si k  50, alors les points entiers
sur Ek sont donn6s par

ABSTRACT. A Diophantine m-tuple is a set of m positive integers
such that the product of any two of them is one less than a perfect
square. In this paper we study some properties of elliptic curves
of the form y2 = (ax + 1)(bx + 1)(cx + 1), where is a

Diophantine triple.
In particular, we consider the elliptic curve Ek defined by the

equation y2 = (F2kX + 1)(F2~+2x + 1)(F2k+4x + 1), where k &#x3E; 2

and F~, denotes the n-th Fibonacci number. We prove that if the
rank of Ek (Q) is equal to one, or k  50, then all integer points
on Ek are given by

1. Introduction

Diophantus found four positive rational numbers ~, 161 4 , i6 with the
property that the product of any two of them increased by 1 is a perfect
square. The first set of four positive integers with the above property was

Manuscrit reçu le 8 octobre 1999.
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found by Fermat and that set was {1, 3, 8,120} (see [6, 7]). These two

examples motivate the following definition.

Definition 1. A set of m positive integers (rationals) is
called a (rational) Diophantine rra-tuple if aj + 1 is a perfect square for
all

The famous conjecture is that there does not exist a Diophantine quin-
tuple. There is a stronger version of this conjecture. Let {a, b, c} be a
Diophantine triple, i. e.

Then it is easy to verify (see [1]) that {a, b, c, d+} and la, b, c, d_ } are
Diophantine quadruples.

Conjecture 1. If (a, b, c, d) is a Diophantine quadruple, then d = d+ or
d = d-.

Remark 1. We have

Assume that a  b  c. Then (2) implies d+d-  c2 and d-  c. There-
fore the validity of Conjecture 1 would imply that there does not exist a
Diophantine quintuple.

Remark 2. It is possible that d- = 0. By (2), this is equivalent to

Hence we proved that d- = 0 iff c = a + b + 2r. According to [18], we may
say that d- = 0 iff c is the smallest positive integer greater than b such
that {a, b, c} is a Diophantine triple.

Conjecture 1 was verified for the triple {I, 3, 8} by Baker and Davenport
[2], for the triple {2, 4,12} by Veluppillai [27] and for the triples {1, 3,120},
{1, 8,120}, {1, 8,15}, {1,15, 35} and {I, 24, 35} by Kedlaya [19]. We ver-
ified Conjecture 1 for the parametric families of triples {k - 1, k + 1, 4kl,
f Fak, F2k+2, F’2x+4~ and {I, 3, (see [9, 10] and a joint paper with Attila
Peth6 [13]). Here Fn denotes nth Fibonacci number, and the sequence (ck)
is defined by ci = 8, c2 = 120, Ck+2 = 14ck+l - Ck + 8, k E N.

However, Conjecture 1 is still unproved and as far as we know the best
general result is our recent result that there does not exist a Diophantine
9-tuple [12].
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Let la, b, c} be a (rational) Diophantine triple. In order to extend this

triple to a quadruple, we have to solve the system

It is natural idea to assign to the system (3) the elliptic curve

The purpose of this paper is to study properties of elliptic curves obtained
in this manner and to study connections between solutions of the system
(3) and the equation (4).

Let us mention that the system (3) where a, b, c are arbitrary integers
(rationals) is called Fermat’s triple equation, and in that general case some
connections between (3) and (4) were studied in [15, 25, 28].

2. Obvious points on E

The coordinate transformation
- -.

applied on the curve E leads to the elliptic curve

There are three rational points on E of order 2:

and also other obvious rational points

It is not so obvious, but it is easy to verify that S E 2E(Q). Namely,
S = 2R, where

It is clear that every rational point on (3) induce a rational point on E.
Thus, the question is which rational points on E induce a rational solution
of (3). The answer is given in the following proposition.

Proposition 1. The x-coordinate of the point T E E((a) satisfies (3) iff
T - P E 2E(Q).

Proof. For X = (x, y) E E(Q) we denote by X’ = (xabc, yabc) E E’(Q).
By [20, 4.6, p.89], the function cpa : E’(Q) -&#x3E; Q*/Q*2 defined by
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is a group homomorphism. The same is also valid for the analogously
defined functions cpb and pc. We have cpa(P’) = bcQ *2, pb(P’) = 
pc(P’) = abQ*2. Now, x(T) satisfies (3) iff

and this is equivalent to

By the 2-descent Proposition (see [17, 4.1, p.37], [20, 4.2, p.85]), this is
equivalent to T’ - P’ E 2E’(Q). D

By Proposition 1 and the relation S = 2R it follows that the numbers
x(P + S) and x(P - S) satisfy the system (3). It is easy to check that

x(P + S) = d- and x(P - S) = d+, where d+ and d- are defined by (1).
The addition and subtraction of point S has another interesting property.

Theorem 1. If x-coordinate of the point T = (x, y) E E((a) satisfies (3),
then for the points T f S = (u, v) it holds that x - u + 1 is a square.

Proof. Direct computation shows that x(T ~ S) are exactly the numbers
x5 and obtained from [8, Theorem 1] applied to (~1,~2,~3,~4) =
(a, b, c, x). Since X4X+ + 1 and x4x5 + 1 are perfect squares, the proof
is finished. D

Corollary 1. Every Diophantine quadruple la, b, c, d~ can be extended to
a rational Diophantine quintuple {a, b, c, d, e}.
Note that by [8, Corollary 1], if e in Corollary 1 is obtained by con-

struction from Theorem 1, then e  1, and therefore e is not a positive
integer.

3. Torsion group and rank of E

In this section we assume that a, b, c are positive integers and a  b  c.

Lemma 1. A’, B’, C’ ¢ 2E’(Q)

Proof. If A’ E 2E’(Q), then 2-descent Proposition implies that c(a - b) is
a square. But c(a - b)  0, a contradiction. Similarly 2E’(Q).

If C’ E 2E’(GZ), then
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Then we have

From (6) we have

and

From (7) we conclude that c &#x3E; a4b and furthermore either) /
6.

If ,Q2 - 1 &#x3E; B/6, then 0 &#x3E; 4 b, and if we put this in (6), we obtain

which implies ab  ~ + 1, a contradiction.
If fl = 1, then from (7) we find that

Now we have

Hence which is

equivalent to 
‘ ’

It is obvious that (9) implies a E {1,3}. For a = 1 we find from (9) and
(8) that b = 8 and c = 3  b. For a = 3 we find b = 8 and c = 21, and this
does not satisfy the first equation in (5). D

Theorem 2. Z/2Z x Z/2Z or Z/2Z x Z/6Z

Proof. The statement follows directly from Lemma 1 and the theorem of
Mazur [21]. D

Remark 3. In [11] it is proved that for the triples of the form f k - 1, k +
1,4A;} it holds Z/2Z x Z/2Z. In [14] the same result is proved
for the triples {I, 3, where ck is defined in the introduction.

Theorem 3. rankE(Q) ~ 1
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Proof. It suffices to prove that the point S’ on E’(Q) has an infinite order.
Assume that S’ has finite order. Then S’ + A’ has finite order too, and by
Lutz-Nagell Theorem [20, 1.6, p.15~, the coordinates of S’ + A’ are integers.
The first coordinate of S’ + A’ is

If this number is an integer, then

is also an integer, and hence ab + ac + 1- a2 &#x3E; be + 1. But this implies
(b - a) (c - a)  0, a contradiction. D

Remark 4. In general, we may expect that the points P and S are two
independent points of infinite orders, and therefore that rankE(Q) &#x3E; 2.

This is checked for the 2, in [14]. However, if c is
smallest possible, i. e. c = a + b + 2r, then the direct computation shows
that 2P = -S.

4. Integer points on E

Let {a, b, c} be a Diophantine triple. We would like to find all integer
points on the elliptic curve

We have always the following integer points:

and also (-l, o) if 1 E la, b, c}. The question is whether there is any other
integer point on E. We don’t know any counterexample to the conjecture
that there are no other points on E. However, we can prove this conjecture
only in very special cases. First of all, in these cases we have to prove
Conjecture 1.

If we can prove Conjecture 1 for the triple la, b, c}, then we may try to
prove that in that case there are no other integer points on E apart from
seven points listed above. However, we are able to do this only under the
assumption that the rank is "the smallest possible" .
More precisely, we proved in [11] that if rank Ek (Q) =1, where

then all integer points on Ek are given by
. - - .
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We also verified this statement for all 3  k  1000. The condition

rankEk(Q) = 1 is not unrealistic since the generic rank of (10), i.e.

rank E(Q(k) ) , is equal to 1. In the range 2  k  100 we obtained (using
MWRANK [5] and SIMATH [26]) the following distribution of ranks: 41 cases
of rank 1, 49 cases of rank 2 and 9 cases of rank 3.

If k = ki (n) = 3n2 + 2n - 2, n E Z B {-1, 0,1 }, or k = k2(m) = 2 (3m2 +
5m), m E Z B ~-2, -1, 0}, then 2 and we proved that if in
these cases rank Ek (Q) = 2, then all integer points on E~ are given by (11).
Here for the generic ranks it holds rankE((a(n)) = rank E(Q(m)) = 2.
Finally, we considered the intersection of the families and 

We proved that if k = 24 (t? - 25), where

then rank Ek(Q) 2: 3 for i ~ -1, 0, and if rank Ek (Q) = 3, then again all
integer points on Ek are given by (11).

In the joint paper with Attila Peth6 [14] we considered the family

where ck is defined in the introduction. Here 2 for k &#x3E; 2.

Let Ck + 1 = and 3Ck + 1 = t2. k We proved that if rank Ck (Q) = 2, then
all integer points on Ck are given by

We also verified this statement for k  40, with possible exceptions k = 23
and = 37.

Lemma 2. Let la, b, cl, a  b  c, be a Diophantine triple. Then P, P +
A, P + B f/. 2E(Q). Furthermore, P + c ft 2E((a) unless c = a + b + 2r
and c, c - a and c - b are all twice a square.

Proof. If P E 2E(Q), then the 2-descent Proposition implies that ab is a
square, which is in a contradiction with ab+ 1 = r2. Since a(a - b)  0 and

b(b - c)  0, the 2-descent Proposition implies P + A, P + B g 2E(Q).
Assume that P + C E 2E(Q). Then by the 2-descent Proposition we

have

Let c2 - ac = (c - e)2, where 0  e  c. From e2 = c(2e - a) we conclude
that e &#x3E; VC. This implies 2qZ  a + 1 and c  a2  ab. By [18], c  4ab

implies c = a + b + 2r. Then t = b + r and a = b + c - 2t. Now system (12)
becomes
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Assume c, 2t - b and c - b are all a square multiplied by 6. Then c - b
2t - 0 (mod 6) and from 2bc + 2 = 2t2 we find that 6= 1 or6=2.
Assume that 6 = 1. Then c = a2, c - b = ~i2, 2t - b = 72. If a is even and

,3 is odd, then we have c - 0 (mod 4), b - 3 (mod 4) and -y2=- 3 (mod 4),
a contradiction. If a is odd and fl is even, then we have b = c = 1 (mod 4)
and t2 = 2 (mod 4), a contradiction. Finally, if a and fl are odd, then we
have c -1 (mod 4), b m 0 (mod 4) and 72 - 2 (mod 4), a contradiction.

Therefore 6 = 2 and c, c - a and c - b are all twice a square. 0

Theorem 4. Let ab + 1 = r2 and c = a + b + 2r. Assume that among the
numbers a, 2a, b, 26, c, 2c there are no perfect squares. If rank E(Q) = 1,
then all integer points (x, y) on E satisfy the system

Proof. Let E’(Q)/ E’(Q)tors =  U &#x3E;. If X E E~((a), then we can represent
X in the form X = mU + T, where m E Z and T E We
have also P’ = nU + Ti for an integer mp and a torsion point Tl. Since

Z/2Z x Z/2Z or Z/2Z x Z/6Z, we have Ti * 0, A’, B’ or C’
(mod 2E’((a)). Now Lemma 2 implies that n is odd. Therefore we have
X - Xl (mod 2E~(Q)), where

Since the functions pc defined in the proof of Proposition 1 are
homomorphisms, in order to find all integer points on E, it sufhces to solve
in integers all systems of the form

where for Xl = (abcu, abcv) E s, the numbers a, ~3, y are defined by a =
au + 1, ,~ = bu + 1, , = cu + 1 if all of these three expressions are nonzero,
and if e.g. au + 1= 0 then we define a = /3,. Here D denotes a square of
a rational number.

Since for Xl = P’ the system (13) is equivalent to system (3), we have
to prove that for Xl E S B ~P’~, the system (13) has no integer solutions.

For Xl E ~A’, B’, P’ + A’, P’ + B’l exactly two among the numbers
a, /3" are negative and therefore the system (13) has no integer solution.
Let e’ denote the square-free part of an integer e and let e" = min~~e’~, 

If Xl = 0, then the system (13) becomes

First we will prove that gcd(a’, b’) = 1 or 2. Assume that a prime p divides
a’ and b’. Then from ax + 1 = bcD we conclude that plc’, and from c =
a + b + 2r that pl2r. Now from 2ab + 2 = 2r2 it follows that p = 2.

Analogously we can prove that gcd(a’, c’) = 1 or 2 and ged(b’, c’) =1 or 2.
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Since a" divides bx + 1 and cx + 1, we conclude that a" divides c - b =
a + 2r. Therefore a"12r. Analogously we find that b" ~ 2r and c~2~. But now
the relations 2as + 2 = 2r2 and 2ac + 2 = 2s2 imply a", b", c" E ~ 1, 2~ . Thus
at least one of the numbers ab, ac and be is a perfect square, a contradiction.

If X, = C’, then the system (13) becomes

Assume that plc’ and a)’. Then from cx + 1 = (c - a)(c - b) D we
conclude that pl(c - b)~. Hence we have pla, b, c and therefore pl2r and we
obtain that p = 2, as before. Hence we proved that gcd(c’, (c - a)’) = 1 or
2, and in the same manner we can prove that gcd(c’(c - b)’) = 1 or 2 and
gcd((c - a)’, (c - b)’) = 1 or 2. Since c" divides b - a = c - 2s we find as
above that c is either a square or twice a square.

If Xl = P’ + C’, then the system (13) becomes
cx + 1 = ab(c - a) (c - b)D.

As before we can prove that gcd(a’, (c-b)’), gcd (a’, (c-a)~), gcd(a’, b’) = 1
or 2, and since a" divides c - b we conclude that a is either a square or
twice a square. Similarly we can prove that b is either a square or twice a
square. 0

5. On the Hoggatt-Bergum conjecture

In 1977, Hoggatt and Begum [16] proved that for k &#x3E; 1 the set

fF2k, F2k+2, F2k+4, 
is a Diophantine quadruple. They conjectured that the fourth number

with the above property is unique. This is a special case
of Conjecture 1. We proved the Hoggatt-Bergum conjecture in [10]. We
will give a sketch of the proof.

Eliminating d from the system

we obtain the system of Pellian equations
no no

We reformulate our problem to the problem of finding the intersection of
two binary recurrence sequences. We then transform the exponential equa-
tion into an inequality for linear forms in three logarithms of algebraic
numbers. A comparison of the theorem of Baker and W3stholz [3] with the
lower bound for the solutions obtained for the congruence condition modulo

finishes the proof for k &#x3E; 49. We prove the statement for k  48

by a version of the reduction procedure due to Baker and Davenport ~2~.
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Since we can solve the system (14) completely, we may try to find all
integer points on the elliptic curve

Theorem 5. Ek(Q)tors = Z/2Z x Z/2Z.
Proof. By Theorem 2, it suffices to prove Z/2Z x Z/6Z. As-
sume Z/2Z x Z/6Z. By a theorem of Ono [24], this implies
that there exist integers a and 3 such that ~ ~ {-2, -1, -!, 0, I} and

Adding the two expressions in (16) we obtain

The sequence + is periodic with period equal 3:
(2, 7, 3, 2, 7, 3, ... ). Therefore, the left hand side of (17) is congruent to 2,
3 or 7 modulo 8. Since the right hand side of (17) is congruent to 0, 1, 5
or 6 modulo 8, we obtain a contradiction. D

Theorem 6. Let k &#x3E; 2 be an integer. If rank Ek (Q) = 1, then all integer
points on Ek are given by

Proof. The statement follows directly from [10, Theorem 2] and Theorem 4,
unless at least one of the numbers F2k, F2x+2, F’2k+4 is a square or twice a
square. By [4], this is the case iff 2  k  6.

However, from the proof of Theorem 4 it follows that if F2k+4 is neither
a square nor twice a square, then we should have that F2k and F2k+2 are
both either a square or twice a square. This observation eliminates all cases

except k = 4.
If k = 4, we have to solve the system (13) for Xi = C’. In this case the

system (13) becomes

where D denotes a square of a rational number. But the first equation in
(19) is clearly impossible modulo 3. D

In the following table we list the values of rank (Ek (Q)) which we were
able to compute using John Cremona’s program MWRANK [5]:

- - - - - -- ---



121

Theorem 7. If 2  1~  50, then all integer points on Ek are given by
(18).

Proof. We will use the approach introduced in our joint paper with Attila
Peth6 [14].
Assume that (x, y) is an integer solution of (15). Then there exist integers

Xl, X2, X3 such that

where This leads to the system

Hence, to find all integer solutions of (15), it is enough to find all integer
solutions to the systems of equations

where

By [10, Theorem 2], we may assume (Di, D2, D3) # (1,1,1).
We first considered the equations (20) and (21) separately modulo ap-

propriate prime powers (see [14] and [11] for details). We tested all possible
systems for 2  k  50 using A. Peth6’s program developed for the pur-
poses of our joint paper [14]. We found that all systems are unsolvable
apart from three systems listed in the following table.
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Remaining three cases we consider separately.

Assume that the equation 46368x 2 - 193864605X2 = 3 has an integer solu-
tion. Then there is an integer solution of the equation

(22) x2 -15456 ~ 64621535y2 = 15456.
Note that 15456 = 2 .3 . 7 . 23 . 4~ = 966 - 42 and 64621535 = 5 - 11 ~ 41.
28657. Since the equation a2 - 966-64621535b 2=6601 = 7 . 23 .41 has an
integer solution ((a, b) = (P854,Q854), is the nth convergent in theqn

continued fraction expansion of v’966 64621535), by a theorem of Nagell
[23, Theorem 11~, equation (22) has no integer solution.

We have the system

Let consider this system modulo 5. The third equation implies x2 * X3 = 0
(mod 5). Now the first equation implies 2 (mod 5), a contradiction.

Assume that the equation dix 2 - d2x2 = jl has an integer solution. Then
the equation

also has an integer solution. The fundamental solution of the equation
u2 - did2v2 = 1 is (uo, vo) = (37889062373143906,1). By a theorem of
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Nagell [22, Theorem 108], it follows that if (23) has an integer solution,
then there is a solution of (23) such that

It is easy to check that there are no solutions of (23) with 1 :::; Y  59,
and therefore there are no solutions of the original equation dlxl - =

jl. D
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