JOSE FELIPE VOLOCH
Chebyshev’s method for number fields

Journal de Théorie des Nombres de Bordeaux, tome 12, n°1 (2000),
p- 81-85

<http://www.numdam.org/item?id=JTNB_2000__12_1_81_0>

© Université Bordeaux 1, 2000, tous droits réservés.

L’acces aux archives de la revue « Journal de Théorie des Nombres
de Bordeaux » (http://jtnb.cedram.org/) implique I’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

‘NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=JTNB_2000__12_1_81_0
http://jtnb.cedram.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Journal de Théorie des Nombres
de Bordeaux 12 (2000), 81-85

Chebyshev’s method for number fields

par Jost FELIPE VOLOCH

REsuME. Nous donnons une preuve élémentaire d’une minora-
tion explicite du nombre de nombres premiers qui se décomposent
complétement dans un corps de nombres. La preuve qui utilise
les propriétés des coeflicients binomiaux s’apparente a ’approche
classique des théorémes de Chebyshev.

ABSTRACT. We give an elementary proof of an explicit estimate
for the number of primes splitting completely in an extension of
the rationals. The proof uses binomial coefficents and extends
Chebyshev’s classical approach.

Chebyshev [C] proved that the number of primes up to =z was between
multiples of z/log z. In the simplified form of Chebyshev’s method worked
out by Erdos this can be obtained by looking at the prime factorization of
the binomial coefficients (**). Note that (**) = (—4)" (_:L/ %) is the n-th
coefficient of the Taylor expansion of (1 — 4z)~1/2. In the course of their
work on Grothendieck’s conjecture on differential equations, by considering
Padé approximations to (1 4+ z)*®,i = 1,2,... where « is an irrational
algebraic integer, D. and G. Chudnovsky proved that there are infinitely
many primes which do not split in Q(«a) (which is of course a special case of
Chebotarev’s density theorem). The proof requires estimating complicated
expressions in various binomial coefficients (ia: j). In this paper we show
that, at least for Q(a)/Q Galois, we can very easily obtain not only that
there are infinitely many primes which split completely in Q(a), but that
there are at least a multiple of z1/¢/logz (d = [Q(a) : Q]) such primes up
to z, by simple estimates of (z) We will also study the prime factorization
of (z) in the light of the present knowledge about the distribution of primes
to analyse the scope of this method.

Lemma 1. Let a € C,a ¢ N, then log|(Z)| = o(n).

Proof. This is of course elementary and well-known. The function (1 + )
is holomorphic on the unit disk and has a singularity at = —1 so its Taylor
expansion about zero has radius of convergence 1, hence the result. U

Manuscrit regu le 17 juin 1999.



82 JOSE FELIPE VOLOCH

For our purposes, Lemma 1 will suffice, but it is worth pointing out that
the estimate can be substantially improved (see [VV]).

For now on let a be an irrational algebraic integer such that Q(a)/Q is
Galois and denote by & = oy, ... , a4 the conjugates of @, so d = [Q(a) : Q].
Put f(z) = [[(z — a;), the minimal polynomial of o over Q. Under our
assumptions, f(z) € Z[z]. Let A, be the absolute norm of ($), which is a
non-zero rational number. We denote by v, the p-adic valuation associated
to the prime p. We will often use that, since Q(a)/Q is Galois, for a prime
p of Q, p splits completely in Q(a) if and only if there is a prime of Q(a)
above p which is split over Q.

Lemma 2. Assume that p does not divide the discriminant of f(x). Then
vp(An) > 0, if p splits completely in Q(a) and vp(An) < 0 otherwise.

Proof. If p splits completely in Q(c) then Q(a) embeds in Q, and since
Q(a)/Q is Galois, all conjugates of a will be in Q,. Therefore, they will
actually be in Z,, since they are algebraic integers. Now, for z € Z, then
(%) € Zp, so (%) € Zp,i = 1,... ,d, if p splits, giving the first statement
of the lemma. For the second statement we note that there is no root of
the minimal polynomial of & in Z/pZ in that case for that would force the
existence of a root of f(z) in Z,, by Hensel’s lemma, which would force p
to split, so p does not divide the numerator of A,,. O

Lemma 3. Assume p does not split in Q(a). Then vp(Ap) < —cn +
O(logn), for some ¢ > 0 depending on p.

Proof. If v, denotes an extension of the p-adic valuation to Zp[a] then, since
p does not split, Z,[a] is strictly bigger than Z, so there exists an integer
s > 0 such that vp(a; — k) < 8,5 = 1,... ,d,k € Z. Given j,1 < j < d,
there are at most n/p + O(1) integers k,0 < k < n with vy(a; — k) > 0.
At most n/p? + O(1) of those satisfy vp(e; — k) > 1 and so on, until at
most n/p* + O(1) of those satisfy vp(a; — k) > s — 1 but none satisfy
vp(oj — k) > 5. As

H;cl;é j'ii:l (aj — k)

we get vp(An) <dd n/pz +0(1) — dup(n!). Asvp(nl) =Y 2, [n/p'], we
get vp(Ayn) < —dn} . 1/p' + O(logn), as was to be proved. d

Lemma 4. If p splits in Q(a) then vy(A,) < logn/logp.
Proof. Consider A,, a as p-adic integers. We have that
nld )

Given j,1 < j < d, there are n/p + O(1) integers k,0 < k < n with
k = aj(mod p) and n/p? + O(1) of those satisfy k = a;(mod p?) and so on.

An=
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However, if p"|(aj — k) then p” < k% < n¢, so r < logn/logp. Therefore
the p-adic valuation of the numerator of the above expression for 4, is at
most dn/(p — 1) + O(logn/log p). But the last expression is also a lower
bound for the p-adic valuation of the denominator of the above expression
for A,,, namely n!®. The lemma follows. O

Theorem. If S is the set of primes splitting in Q(a) then
#{p<z|peS}>=zlogz.

Proof. For z sufficiently large, let y be the unique positive solution to
f(y) = z and put n = [y]. By lemma 1, log |4,| = o(n). On the other hand,
log |An| = 3 pcsvp(An)logp + 3¢5 vp(An) logp. Clearly, if vy(An) > 0
with p € S, then p-divides f(k) for some k,0 < k < n,sop < f(n) < z and
by lemma 4, v,(Ap) log p < log z, so

va(An)logp L#{p<z|pe€ S}logz.
pES

By lemma 2, for all but finitely many primes p not in S, vp(4n) < 0
and for any p ¢ S, vy(An) < —cn eventually. Therefore, provided there
exists at least one prime p ¢ S, — ) ;5 vp(An)logp > n > z'/4, and the
result follows. If S is the set of all primes then the theorem follows from
Chebyshev’s original argument. O

It is possible to estimate the implicit constant in the statement of the the-
orem by making explicit the estimates in Lemmas 1, 3 and 4. For Lemma 1,
this is done in [VV] and the estimate will depend on the archimedian ab-
solute values of «, and for suitable a, these can be estimated in terms of
the discriminant of Q(a). The constant in Lemma 4 is easily estimated
and depends only on d. The constant in Lemma 3 is 1/(p — 1), if p does
not ramify. This will make the constant in the Theorem depend on the
size of the smallest non-split prime, which in general can be bounded by a
power of the discriminant of Q(a) (see [VV]). The implicit constant in the
Theorem will then be a negative power of the discriminant of Q(a) for z
sufficiently large. For cyclotomic fields this can be much improved. If a is
a primitive m-th root of unity then p splits if and only if p = 1(modm),
so in particular, none of the primes p < m split and the constant of the
theorem in this case can be taken to be }_,_,,log p/(p — 1) which is about
log m, for m large.

Let’s stop pretending we don’t know anything about the distribution
of primes. The estimate #{p < z | p € S} ~ z/dlogz is equivalent to
the prime ideal theorem for Q(a). We will now discuss the limitations
of the above method. The contribution of a prime p that doesn’t split or
ramify in Q(a) to the logarithm of the denominator of A, is dlog pvp(n!) =
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dlogp > [n/p%], so the logarithm of the denominator of A, is

log p
dn Z p-1 + O(n)
p<n,p¢s

and this is the same as (d — 1)nlogn + O(n). Using lemmas 1 and 4 we get
that, for any ¢ > 1, 3° 5 ,<cn Up(An) logp = O(n). Therefore large primes
must be contributing to the numerator of A,. Note that vp(4,) > 0 for
p > n if and only if there exists a,1 < a < n, f(a) = 0(mod p). Thus, large
primes p which contribute to the numerator of A,, are those for which there
is a small solution to f(z) = O(modp). In the case that a is imaginary
quadratic, Duke et al. [DFI] have shown that the values of a/p, where
0 < a < p, f(a) = 0(mod p), are uniformly distributed in [0, 1] as p varies.
No such result is known for general a, but a weak statement about small
values of a/p can be deduced from the above and, replacing a by 2a we get
values of a/p near 1/2 but it is unclear how far this can be pushed.

Here is a numerical example. Let, as usual, i2 = —1 and let A be the
norm of (5) (A = Aso in the above notation). Its value is approximately
A =0.001441.... The numerator of 4 is

85421808162799755132933801436866778653179707039034128606073
6137662393252068140777,

which factors as

13217%29° 3753261 7328997101 109 113 137 149 157 181 197 257
313353401 421461577613 677 761 1013 1201 1297 1601,

and we can see that indeed primes much larger than 50 occur. The denom-
inator of A is

59278443621977273638751443740525496847515686025377365
1024470394041201404156839985152,

which factors as 269344716118194234312432472.

There is a different way to extend Chebyshev’s method for number fields,
first considered by Poincaré [P] for quadratic fields and by Landau [L], in
general. It consists of taking []y;.x NI as a generalization of the factorial,
where I runs through the non-zero ideals of the number field, NI is the
norm of I and X is a parameter. This appoach has been combined with
deep modern estimates in prime number theory by Friedlander [F] to give
good estimates for the number of split primes uniformly in terms of the
discriminant of the number field.
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