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Continued Fractions, Multidimensional
Diophantine Approximations and Applications

par NikoLAl G. MOSHCHEVITIN

RESUME. Cet article rassemble des résultats généraux d’appro-
ximation diophantienne, sur les meilleures approximations et leurs
applications a la théorie de répartition uniforme.

ABsTRACT. This paper is a brief review of some general Dio-
phantine results, best approximations and their applications to
the theory of uniform distribution.

1. DIOPHANTINE APPROXIMATIONS.

1.1. One-dimensional approximations.

1.1.1. Lagrange spectrum. Let a be an irrational number. Dirichlet’s theo-
rem states that there are infinitely many positive integers g such that

1
qa)| < —
llged| p

holds, where || - || denotes the distance to the nearest integer. Hurwitz
obtained a more precise result: for any irrational number a, the inequality

1
llgal| < —=

Vg

has infinitely many solutions in q. Moreover, there is a countable set of
numbers «a for which this inequality is an exact one, that is, for any positive
€ there are only finitely positive integers ¢ such that the inequality

lqal| < ( = ) L
a ——— w— -—
1 NG q
holds.

We define the Lagrange spectrum to be the set of the real numbers A for
which there exists a = a(\) such that the inequality

1
llgal| < A~
q



426 NIKOLAI G. MOSHCHEVITIN
has infinitely many solutions, and for any positive € the inequality
1
llgall < (A —¢) p

has only a finite number of solutions. It is well-known that Lagrange spec-

trum has a discrete part
1 1

WY
and the minimal A for which there are uncountably many a = a(}) is
A =1/3. Also it is well-known that Lagrange spectrum contains an interval
[0, A*].

Moreover, for any decreasing function 1 satisfying ¥(y) = o(y~!), as y
tends to infinity, there is an uncountable set of real numbers a such that
the inequality

llgal| < ¥(q)
has infinitely many solutions, but for any € > 0, the stronger inequality

llgall < (1 —€)¥(q)
has only a finite number of solutions.

One can find the above results in [5]. All of them can be obtained from
the continued fraction expansion [14].

1.1.2. Best approzimations and continued fractions. Any real number o

may be written as

1
a=by+ i

b+
bo +

b +...
where by € Z and, for j > 0, b; are a nonnegative integers. For convenience,
we use the notation
a= [bo;bl,bz,b3, .o ]
This representation is infinite and unique when « is irrational. If a is
rational, we have a = [b; b1, b2, b3, . .. , bt], and this representation is unique
if we impose the condition b; # 0, 1.
Convergents to a of the order v are defined as
B = [bo;b1,ba, b3, .. 1B
Qv
A simple theorem states that these fraction and only these form the best
approzimations, that is the relation

lgval = min llgal

holds for the denominators g, and only for them (see [14]). We now give
two other easy facts.
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Theorem 1. We have
llgvall < (gv41) 7, (in order of approzimation).
Proposition 2. We have

Pv Qv
Pv+1 Qu41

A, = = +1.

1.1.3. Klein polygons. We now consider the integer lattice Z2 C R2. Let
(¢,a) € Z? be a primitive point (gcd(g,a) = 1) and g,a > 0. We define the
two angles ¢, and ¢_ by

§0+={Z=($,y)€R2: zZO,ngz},

¢—={Z=(x,y)€Rz= yZO,yng},

Klein polygons K. (a,q) and K_(a,q) are defined to be respectively the

following borders
8(conv(p4 N (2%\{0})))

8(conv(p_ N (Z2\{0})))
which consist of finite (nontrivial) intervals.
We now define A(a,q) to be the domain:

and

A(a,q) = {Z-——-(a:,y) ER: £>0,y>0,

Z ¢ conv(ps N (Z2\(0})), Z & conv(p_ N (22\{0}))}.

We have

Theorem 3 ([7, 9]). 1. The vertices of K_(a,q), (different from (q,a)) are
integer points of the form (qau,pay), where (pau/qay) is the 2u-th convergent
to a/q.
2. The vertices of K (a,q) (different from (q,a)) are integer points of the
form (g2v+1,P2v+1), where pay1/qav+1 is the (2v+1)-th convergent to a/q.
3. If (u,v) € (K+(a,q) UK_(a,q)) N Z2 is an integer point then v/u is a
convergent to a/q or one of the intermediate fractions (wp, +py—1)/(wqy +
@-1), 1 <w < byyg.
4. A(a,q)NZ2% = 0.

One can easily verify the same results for infinite continued fractions (i.e.
for irrational numbers).

Recently, several papers [1, 21, 45, 46, 27] devoted to multidimensional
generalization of Klein polygons have appeared. Unfortunately one must
notice that there is something incorrect in papers [45, 46].
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1.1.4. Representation of rationals. The rationals a/q with bounded partial
quotients b; are of great interest (see [22, 23, 24, 11]).

Let N(k,q) be the number of integers A, 1 < A < g, ged(4,g) =1 such
that any component b; of the continued fraction expansion

A
'E = [01 by,... 7bn(A)]

is bounded by k: b; <k, i =1,...,n(A4). It is known ([22, 4, 52]) that
if k£ > vlog ¢ with v sufficiently large, then N(k,q) > 1. Moreover we can
show that for almost all positive integers ¢ and A with 1 < A < ¢, all partial
quotients are bounded by O(log g).
By the way we may recall a famous and still open conjecture which asserts
that for any ¢ > 1, we have N(6,q) > 1. However it is known that the
conjecture holds when g = 2% or ¢ = 3* ([39]).

Sergei Konyagin (see [17]), by means of Farey fractions, proved the fol-
lowing upper bound for N(k,q):

Theorem 4. For any vy <1 and for any k > k() we have

-
N(k,q) < p(q)q™ *lsF,

where ¢ denotes the Euler function.

We define the sequence 4; < Az < -+ < Aq to be an almost arithmetic
progression if

Jw>1: w<Aj1—A4;<3w, j=1,...,d-1

In [32], the author shows that numbers with bounded partial quotients
cannot appear very regularly: they cannot form long almost arithmetic
progressions. The following theorem improves the result from [32].

Theorem 5. For d > 3, let Ay,...,Aq be positive integers. Suppose
(1) 0< Ag < ... < Aq form an almost arithmetic progression;
(ii) ged(4i,9) =1, i=0,...,d.

Let Ay/q = [by,1,--- 1bys()]- Then there ezist vy and po such that
0<wu<d, 1< po < s(v)
and
bVOi“‘O > d1/2'

Theorem 5 is proved by means of Klein polygons. The same result is
true for real-valued (not integer) almost arithmetic progressions and in the
last case S. Konyagin showed that the result for real-valued progressions is
exact in order.
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1.2. Simultaneous approximations. Let ¢y : R, — R, be a positive
and real-valued function. For given a = (ai,...,a;) € R*, a positive
integer p is said to be a 1-approzimation of a, if

|| = i i—a| < .
jggggc,allpaall ;jmax  min |paj — a| < ¥(p)

1.2.1. Dirichlet and Liouville’s theorems. Dirichlet’s theorem states that for
any a = (aq,...,as) € R*, where 1,a;,... ,a; linearly independent over
Z, there are infinitely many 1-approximations of a with ¥(y) = y~1/s,

On the other hand, Liouville’s theorem ([2], ch.5) shows that for any
a=(aj,...,a;) € R* such that 1, a;, ..., a, form a basis of a real algebraic
field of degree s + 1, there exists C(a) such that

max |[paj|| > Cle)p™'/?,  VpeN.

=1yeeey

One can see that there are only countably many algebraic a = (ay,... ,a;).

1.2.2. Theorem by Cassels and Davenport and the result by Jarnik. In 3, 6]
the following result is obtained.

Theorem 6. There exists a constant C, for which there exists an uncount-
able set of elements a € R* which do not have any -approzimation where

P(y) = Cuy~/2.
V. Jarnik [12, 13] proved another result:

Theorem 7. Let 1 and ) be positive real-valued functions such that 1 (y)y'/*
decreases as y — oo and A(y) = 0 as y — oco. Then there ezists an un-
countable set of elements a € R® for which there are infinitely many -
approzimations, but only finitely many Y -approzimations.

A review of other results can be found in [43, 10, 2].

1.2.3. Ezact results in terms of the order of approzimation. Generalizing
the work [3] by means of chains of parallelepipeds [28, 50, 7, 8] we improve
Jarnik’s result.

Theorem 8. Fory > 1, let 1 and w such that Let 1(y) = y~/*w(y), where
w(y) decreases as y — oo and

w(1) < 27D+ (g1)=1/s,

Then there ezists a vector a = (aq,... ,a,) which has infinitely many -
approzimations but not any 2_(’+3)¢-approximatz'on.
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Theorem 9. Let w and v be as in Theorem 8 and suppose that
w(l) < 2—(a+1)(a+3)(8!)—1/a.
Then there exzists an uncountable set of vectors a = (ay,...,q,), each
of them having infinitely many v-approzimations but not any 2~ (5+3)q)_
approzimation.
It follows that in Cassels Theorem 6 we may put
C, = 2—(a+2)(3+3) (s!)—l/a‘

We say that a = (ay,... ,a,) satisfies the 1-condition if a has infinitely
many 1)-approximations but not any cy-approximation for some ¢ = ¢(a)

Theorem 10. Let 1 be defined by ¥(y) = y~Y/*w(y) where w is decreas-
ing positive function. Then in any Jordan s-dimensional domain Q with
Vol Q > 0, there exists an uncountable set of a € R® satisfying the -
condition.

Theorems 8, 9, 10 are discussed in [33].

1.2.4. Successive best approzimations. Let a = (ay,... ,a;) € R*. We de-
fine a best simultaneous approzimation (b.a) of a to be any integer point
¢ = (p,a1,...,as) € Z**! such that Vq, V(b1,...,bs) € Z% 1 < ¢ < p,
(¢,b1,-..,bs) # (p,a1,...,as), we have

D(¢) = max |paj —aj| < max |ga; —bjl.

Let a;j €Q, j =1,...,s. Then all b.a. of o form infinite sequences
¢Y = (p¥,ai,...,al), v=1,2,...
where p! <p? <...<p’ <p"*' <... and
D(¢Y) > D(¢?) >...>D(*) > D¢ ) > ... .
Let

v v

v
P ai ... aj

M,[a] = .
prte ¥ttt L. eyt

For a = (a1,...,a,) satisfying a;j € Q, j = 1,...,8, we define R(a) €

[2,s + 1] to be the integer

R(a) =min {n : there exist a lattice A C Z°*! with dim A =n
and a natural vy such that (¥ € A, Yv > 1p}.

Proposition 11. Let s = 1. Then for any v > 1 we have det M, [a] = +1
(rank M, [a] =2, Vv).

Proposition 12. For any s > 1 we have R(a) = dimg, (a3, ... ,a,,1).
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Proposition 13. Let s = 2 and a1,y such that 1, a1, ay are linearly in-
dependent over Z. Then for infinitely many v we have

rank M, [a] = 3 = dimz(ay, az,1).

Proposition 11 — 13 can be easily verified. The following result is proved
in [36].

Theorem 14. Let s > 3. There erists an uncountable set of elements
a=(ai,...,a;) € R® such that

(1) 1,a1,...,a, are linearly independent over Z,
(thus dimz(ay,... ,as,1) =s+1),
and

(ii) rank M, [a] <3, Vv >1,
(Hence for all v > 1 we have det My [a] = 0).

Theorem 14 represents a counterexample to the conjecture of J.S. La-
garias [26]. It shows that the successive b.a. have no such an asymptotic
property as a reader can see in Proposition 12. The idea of the proof was
suggested to the author by N.P. Dolbilin.

1.3. Linear forms. Again, let a,...,a, be real numbers such that 1,ay,

...,a, are linearly independent over Z, and put a = (ay,...,a;,).
For m = (mg, my,...,m,) € Z**!\ {0} we define
¢(m) = mo +myag + -+ + m,ay, M= max 3|m,-}.
J= L hak b )

A vector m € Z**1\ {0} is a best approzimation of a in sense of linear form
if

{(m) = Sffr.{%}.l}i‘?a ¢(n)]-

All best approximations form sequences

(>0>>0>0v1>. ..,
M <Mp<-- <M, <My <...
where m, = (mg,,...,msy) is the vector of the v-th b.a., {, = {(m,) and
Mll = Inax; Imj,,,|.
By Minkowski’s Theorem we have {, M, ; < 1.

1.3.1. Singular systems. The theorem on the order of approximations from
§1.1.2 does not admit multidimensional generalization in the sense of linear
form.

Theorem 15 (see [29, 35]). Let s be an integer > 1 and v a function such
that ¥ (y) decreases to zero when y tends to infinity. Then there ezists an
uncountable set of elements a = (a1, ...,as) € R® such that

(1) 1,a1,...,a, are linearly independent over Z,
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and
(ii) the sequence of the best approrimations of a satisfies

Cv S ¢(Mu+s—1)-

In the case s = 1 this theorem means that there are real numbers with
any given order of the best approximations. In higher dimensions it gives
something more.

Khinchin [15] defined a vector a = (ay,...,a,) € R® to be a 9-singular
system if for any T > 0 the system

[lmiay + - + msa,l| < (T), M = oz |mj| <T

has a nontrivial solution (my,ma,...,m,) € Z*.
Proposition 16. System is ¢-singular <= (, < Y(My41), Y.

1.3.2. Successive best approzimations for linear form. Here we define A} to
be the determinant of the successive best approximations

mo,y ml,,, cee m,,,,
A =
moy+s Miyts --- Mgty
The proposition below follows from Minkowski theorem on convex body.
It seems to me that it is a well-known fact, but I could not find the corre-

sponding reference.
Proposition 17. Let s = 2. Then for infinitely many v we have A2 # 0.

The theorem below was proved by the author in [35] by means of singular
systems.

Theorem 18. Lets > 3. Then there exists a uncountable set of vectors
a=(ay,... ,a5) € R® such that

(i) 1,a3,... ,a, are linearly independent over Z,

and

(ii) there ezists a linear subspace Lo C R**!, dim L, = 3 satisfying the
condition

myeca, VV>V0-

We see that for s > 3 almost all best approximations may asymptoti-
cally lie in a three-dimensional plane but they cannot lie in two-dimensional
plane. Of course these examples are degenerated in sense of measure. For
almost all vectors a € R® (in the sense of Lebesgue) best approximations
are asymptotically (s + 1)-dimensional.
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2. INTEGRALS FROM QUASIPERIODIC FUNCTIONS

In the text below we discuss applications of diophantine results to certain
problems of uniform distribution of irrational rotations on torus. A full
review of the methods and results of the theory of uniform distribution is
given in [25].

2.1. Uniform distribution. Let T be the one-dimensional torus and f :
T*® — R defined by the series

f(x1,... ,z5) = Z fmexp(2mi(myzy + - - - + mya,)).

mezZs
m#0

We also define the integral

T
I(T,¢) = Ifu(T, ) =/ flwit +p1,...,wst + p,) dt.
0

where wy,...,w, € R are linearly independent over Z, and ¢ = (¢1,-.-,¥s)
€ Re.

H. Weyl [51] proved that if f is a continuous function, then for any ¢ we
have I(T,¢) = o(T), T — oo. This equality holds uniformly in ¢ if we
suppose moreover that f is smooth.

V.V. Kozlov conjectured that the integral I(T, ) is recurrent that is the
following condition holds:

(%) Ve >0, VT, 3T*>T:|I[(T* )| <e.

This conjecture is true when f is any trigonometric polynomial, and in
this case (*) holds uniformly in ¢. This implies that for any trigonometric
polynomial f of finite degree, J*° defined by

J=(T) = J§,,(T) = sup |I(T,¢)|,
pER?

is itself recurrent, that is

(9) Ve >0, VT, 3T*>T:|J®(T")| <e.

2.2. Case s = 2. In the two-dimensional case, the conjecture above was
proved by V.V. Kozlov himself for functions f € C%(T?) in [18] (see also
[19]). It is also easy to see that when f is a smooth function, then (x) holds
uniformly in ¢, that is ($) is true. E.A. Sidorov [44] obtained a similar
result for “absolutely” continuous f.
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2.3. The general result. The author [34] proved the conjecture in the
general case:

Theorem 19. Suppose that

f(z1, .y 25) = Z fmexp(2mi(mizy + ... + m,z,))

mezZ®

m#0
belongs to the class C4(T*), where d > Cs* and w1, ...,ws are linearly
independent over Z. Then for any o, the integral I(T,p) satisfies ().

The proof is based on consideration of best approximations in the sense
of linear form (see §1.3.2.).

2.4. Metric results. It is known [49, 48] that for almost all (in the sense
of Lebesgue) vectors w = (w1,...,w;s) € R*, if f is smooth enough, then
the integral I(T,¢) is bounded when T' — oo uniformly in ¢. Hence the
integral I(T, ) satisfies (x), uniformly in . But even in the case s > 3,
this result is not universal.

Let @ be a decreasing function and assume that the series ), ., ®(m)
converges. We define a periodic function © : T®* — R to be of the type ® if,
the coefficients ©y,, ... .m, in the expansion

27i
G(a:l, .o ,:1:,) = z @mx,...,m,e Timi1z1+ +m,z,,

satisfy
|®Om,,...m,| < (M), where M = max|m;|.
J

We consider

(T) = JE,(T) = max |I1,(T, )|;
J (T) f,w(T) (Ip%aT)s f,w( ,‘P)I,
\ 1/2
@) = 32,0 = ([ [T de)
The result below is proved in [29].

Theorem 20. Let s > 3. Then for any function ® which decreases to zero
as y = oo and for any function ¢ with ¥(y) = o(1) as y — oo, there exist
w1,ws,... ,ws which are linearly independent over Z, and a function f of
type ® such that [}, f(z)dz =0 and

JYT) > Ty(T) VT, 1=2,00.

We will reformulate Theorem 20 in the following way.
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Theorem 21. Let s > 3, and f : T* — R be smooth with zero mean
value. Assume that in the ezpansion

f($1, B :B_,) = Z fml,...,m, ezﬁ(mlzl‘*'""*'mazc)
(M1,0.ma) 0
the coefficients fm, .. m,, where (my,...,m,) # 0, are all different from

zero.
Then there ezist wy, wa, ... , ws which are linearly independent over Z such
that

J) > ty(t) Y 1=2,00.

An improvement of the latter result was obtained recently by E.V. Kolo-
meikina [20].

One can see that the behaviour of integrals J; in two-dimensional case
radically differs from the case s > 3.

2.5. Odd functions. Sergei Konyagin’s result. Recently, S. Konyagin
[16] obtained the following result.

Theorem 22. The Kozlov’s conjecture is true (that is (*) holds) for arbi-
trary 8 > 1 and any function f satisfying the condition

f(—z1,... ,—z5) = f(z1,... ,2,), f€C(T?), Tx<82°

2.6. The smoothness. In [42],[41] it is shown that we need some kind of
smoothness conditions on f to insure that () is true : indeed in the two-
dimensional case (s = 2), there exists a function f : T? — R (with zero
mean value) of the class C'\ C1(T?) such that I(T,0) tends to infinity when
T — oo (with the choice w; = 1 and wp = v/'2). On the other hand, in [44]
it is shown that when s = 2, a sufficient condition on f for having (%), is f
to be absolutely continuous.

Developping an idea of D.V. Treshchev, the author, in [31], generalized
Poincaré’s example. He proved that for any real wy,...,w, which form a
basis of a real algebraic field, there exists a function f € C*~2(T?*)\C*~(T?)
such that I(.,0) does not satisfy the property (x) with ¢ = 0.

One may find some results on algebraic numbers in [40] and [38]. Re-
cently, S.V. Konyagin [16] proved that for some Liouville transcendental
numbers, there exists f € C%(T*) with d x< 2*/s such that (*) is not satis-
fied.

Some early results are reviewed in [37].

2.7. Vector-functions: counterexample in dimension s = 3. Let f7 :
T®* — R, j = 1,2 be defined by

fj(:cl, ceeyTg) = E f,{ exp(2wi(kizy + - -« + kyzy)).
kEZs
k#0
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For wy,... ,ws € R be linearly independent over Z, we put
T
(T = / fi(wit,... ,wst)dt, j=1,2.
0

The analogue of property (*) for the vector-integral I = (I',I%?) : R — R?
becomes

(%) Ve >0 VT 3T* > T: |INT*)| + |I(T*)| < e.

Proposition 23. In the case when s = 2 and f is a smooth vector-func-
tions, then (%) holds.

Proposition 24. The analogue of Theorem 22 holds for vector-function,
that is (%) is satisfied for any odd smooth vector-function f.

Let ® : Ry — Ry be a positive function such that ,g{?. Q(lrg?%’ L))
converges. A vector-function f = (f1,f2) : T* — R? is defined to be a
function of type ® if we have

j < . . _
15 < ®(max Iyl) Vi, 5=1,2
Recently, the author [34] constructed the following example.

Theorem 25. For any given positive function ®, there exist a vector-func-
tion f = (f1, f2) : T3 — R? of the type & with zero mean value ([3s f7(z)dz
=0,j = 1,2) and numbers w;,ws,ws, which are linearly independent over Z
such that

|IX(T)| + |I(T)| = o0, as T — +oo.

Acknowledgment. The author thanks prof. M. Waldschmidt and prof.
P. Voutier for their help in checking the language of the paper.
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