NIKOLAI G. MOSHCHEVITIN

Continued fractions, multidimensional diophantine approximations and applications

Journal de Théorie des Nombres de Bordeaux, tome 11, nº 2 (1999), p. 425-438

<http://www.numdam.org/item?id=JTNB_1999__11_2_425_0>

© Université Bordeaux 1, 1999, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Continued Fractions, Multidimensional Diophantine Approximations and Applications

par NIKOLAI G. MOSHCHEVITIN

RÉSUMÉ. Cet article rassemble des résultats généraux d'approximation diophantienne, sur les meilleures approximations et leurs applications à la théorie de répartition uniforme.

ABSTRACT. This paper is a brief review of some general Diophantine results, best approximations and their applications to the theory of uniform distribution.

1. DIOPHANTINE APPROXIMATIONS.

1.1. One-dimensional approximations.

1.1.1. Lagrange spectrum. Let α be an irrational number. Dirichlet's theorem states that there are infinitely many positive integers q such that

$$||q\alpha|| < rac{1}{q}$$

holds, where $|| \cdot ||$ denotes the distance to the nearest integer. Hurwitz obtained a more precise result: for any irrational number α , the inequality

$$||qlpha|| < rac{1}{\sqrt{5}q}$$

has infinitely many solutions in q. Moreover, there is a countable set of numbers α for which this inequality is an exact one, that is, for any positive ε there are only finitely positive integers q such that the inequality

$$||qlpha|| < \left(rac{1}{\sqrt{5}} - arepsilon
ight)rac{1}{q}$$

holds.

We define the Lagrange spectrum to be the set of the real numbers λ for which there exists $\alpha = \alpha(\lambda)$ such that the inequality

$$||q\alpha|| < \lambda \frac{1}{q}$$

has infinitely many solutions, and for any positive ε the inequality

$$||qlpha|| < (\lambda - arepsilon) \, rac{1}{q}$$

has only a finite number of solutions. It is well-known that Lagrange spectrum has a discrete part

$$\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{8}}, \cdots,$$

and the minimal λ for which there are uncountably many $\alpha = \alpha(\lambda)$ is $\lambda = 1/3$. Also it is well-known that Lagrange spectrum contains an interval $[0, \lambda^*]$.

Moreover, for any decreasing function ψ satisfying $\psi(y) = o(y^{-1})$, as y tends to infinity, there is an uncountable set of real numbers α such that the inequality

$$||qlpha|| < \psi(q)$$

has infinitely many solutions, but for any $\varepsilon > 0$, the stronger inequality

$$||q\alpha|| < (1-arepsilon)\psi(q)$$

has only a finite number of solutions.

One can find the above results in [5]. All of them can be obtained from the continued fraction expansion [14].

1.1.2. Best approximations and continued fractions. Any real number α may be written as

$$lpha = b_0 + rac{1}{b_1 + rac{1}{b_2 + rac{1}{b_3 + \dots}}}$$

where $b_0 \in \mathbb{Z}$ and, for j > 0, b_j are a nonnegative integers. For convenience, we use the notation

$$\alpha = [b_0; b_1, b_2, b_3, \ldots].$$

This representation is infinite and unique when α is irrational. If α is rational, we have $\alpha = [b_0; b_1, b_2, b_3, \dots, b_t]$, and this representation is unique if we impose the condition $b_t \neq 0, 1$.

Convergents to α of the order ν are defined as

$$rac{p_{
u}}{q_{
u}} = [b_0; b_1, b_2, b_3, \dots, b_{
u}]$$

A simple theorem states that these fraction and only these form the best approximations, that is the relation

$$||q_
ulpha|| = \min_{q < q_
u} ||qlpha||$$

holds for the denominators q_{ν} and only for them (see [14]). We now give two other easy facts.

426

Theorem 1. We have

 $||q_{\nu}\alpha|| \asymp (q_{\nu+1})^{-1}$, (in order of approximation).

Proposition 2. We have

$$\Delta_{\boldsymbol{\nu}} = \left| \begin{array}{cc} p_{\boldsymbol{\nu}} & q_{\boldsymbol{\nu}} \\ p_{\boldsymbol{\nu}+1} & q_{\boldsymbol{\nu}+1} \end{array} \right| = \pm 1.$$

1.1.3. Klein polygons. We now consider the integer lattice $\mathbb{Z}^2 \subset \mathbb{R}^2$. Let $(q, a) \in \mathbb{Z}^2$ be a primitive point $(\gcd(q, a) = 1)$ and q, a > 0. We define the two angles φ_+ and φ_- by

$$egin{aligned} arphi_+ &= \left\{ Z = (x,y) \in \mathbb{R}^2 : \;\; x \geq 0, y \geq rac{a}{q} x
ight\}, \ arphi_- &= \left\{ Z = (x,y) \in \mathbb{R}^2 : \;\; y \geq 0, y \leq rac{a}{q} x
ight\}, \end{aligned}$$

Klein polygons $\mathcal{K}_+(a,q)$ and $\mathcal{K}_-(a,q)$ are defined to be respectively the following borders

$$\partial(\operatorname{conv}(\varphi_+ \cap (\mathbb{Z}^2 \backslash \{0\})))$$

and

$$\partial(\mathrm{conv}(arphi_{-}\cap(\mathbb{Z}^2ackslash\{0\})))$$

which consist of finite (nontrivial) intervals.

We now define $\Delta(a,q)$ to be the domain:

$$egin{aligned} \Delta(a,q) &= \Big\{ Z = (x,y) \in \mathbb{R}^2: \;\; x > 0, y > 0, \ &\quad Z
ot \in \operatorname{conv}(arphi_+ \cap (\mathbb{Z}^2 ackslash \{0\})), \;\;\; Z
ot \in \operatorname{conv}(arphi_- \cap (\mathbb{Z}^2 ackslash \{0\})) \Big\}. \end{aligned}$$

We have

Theorem 3 ([7, 9]). 1. The vertices of $\mathcal{K}_{-}(a,q)$, (different from (q,a)) are integer points of the form $(q_{2\mu}, p_{2\mu})$, where $(p_{2\mu}/q_{2\mu})$ is the 2μ -th convergent to a/q.

2. The vertices of $\mathcal{K}_{+}(a,q)$ (different from (q,a)) are integer points of the form $(q_{2\nu+1}, p_{2\nu+1})$, where $p_{2\nu+1}/q_{2\nu+1}$ is the $(2\nu+1)$ -th convergent to a/q. 3. If $(u,v) \in (\mathcal{K}_{+}(a,q) \cup \mathcal{K}_{-}(a,q)) \cap \mathbb{Z}^{2}$ is an integer point then v/u is a convergent to a/q or one of the intermediate fractions $(wp_{\nu} + p_{\nu-1})/(wq_{\nu} + q_{\nu-1}), 1 \leq w \leq b_{\nu+1}$. 4. $\Delta(a,q) \cap \mathbb{Z}^{2} = \emptyset$.

One can easily verify the same results for infinite continued fractions (i.e. for irrational numbers).

Recently, several papers [1, 21, 45, 46, 27] devoted to multidimensional generalization of Klein polygons have appeared. Unfortunately one must notice that there is something incorrect in papers [45, 46].

1.1.4. Representation of rationals. The rationals a/q with bounded partial quotients b_j are of great interest (see [22, 23, 24, 11]).

Let N(k,q) be the number of integers $A, 1 \le A < q$, gcd(A,q) = 1 such that any component b_i of the continued fraction expansion

$$\frac{A}{q} = [0; b_1, \ldots, b_{n(A)}]$$

is bounded by $k: b_i \leq k, i = 1, ..., n(A)$. It is known ([22, 4, 52]) that if $k > \gamma \log q$ with γ sufficiently large, then $N(k,q) \geq 1$. Moreover we can show that for *almost all* positive integers q and A with $1 \leq A < q$, all partial quotients are bounded by $O(\log q)$.

By the way we may recall a famous and still open conjecture which asserts that for any $q \ge 1$, we have $N(6,q) \ge 1$. However it is known that the conjecture holds when $q = 2^{\alpha}$ or $q = 3^{\alpha}$ ([39]).

Sergei Konyagin (see [17]), by means of Farey fractions, proved the following upper bound for N(k,q):

Theorem 4. For any $\gamma < 1$ and for any $k \ge k(\gamma)$ we have

$$N(k,q) \ll \varphi(q)q^{-rac{\gamma}{k\log k}},$$

where φ denotes the Euler function.

We define the sequence $A_1 < A_2 < \cdots < A_d$ to be an almost arithmetic progression if

$$\exists w > 1: w \leq A_{j+1} - A_j \leq 3w, j = 1, \dots, d-1.$$

In [32], the author shows that numbers with bounded partial quotients cannot appear very regularly: they cannot form long almost arithmetic progressions. The following theorem improves the result from [32].

Theorem 5. For $d \ge 3$, let A_0, \ldots, A_d be positive integers. Suppose (i) $0 < A_0 < \ldots < A_d$ form an almost arithmetic progression;

(ii) $gcd(A_i, q) = 1, i = 0, ..., d.$

Let $A_{\nu}/q = [b_{\nu,1}, \ldots, b_{\nu,s(\nu)}]$. Then there exist ν_0 and μ_0 such that

$$0\leq
u_0\leq d\ ,\ 1\leq \mu_0\leq s(
u_0)$$

and

$$b_{
u_0,\mu_0} \gg d^{1/2}$$
 .

Theorem 5 is proved by means of Klein polygons. The same result is true for real-valued (not integer) almost arithmetic progressions and in the last case S. Konyagin showed that the result for real-valued progressions is exact in order. 1.2. Simultaneous approximations. Let $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ be a positive and real-valued function. For given $\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$, a positive integer p is said to be a ψ -approximation of α , if

$$\max_{j=1,\ldots,s} ||plpha_j|| = \max_{j=1,\ldots,s} \ \min_{a\in\mathbb{Z}} \ |plpha_j-a| \leq \psi(p).$$

1.2.1. Dirichlet and Liouville's theorems. Dirichlet's theorem states that for any $\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$, where $1, \alpha_1, \ldots, \alpha_s$ linearly independent over \mathbb{Z} , there are infinitely many ψ -approximations of α with $\psi(y) = y^{-1/s}$.

On the other hand, Liouville's theorem ([2], ch.5) shows that for any $\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$ such that $1, \alpha_1, \ldots, \alpha_s$ form a basis of a real algebraic field of degree s + 1, there exists $C(\alpha)$ such that

$$\max_{j=1,\ldots,s} ||plpha_j|| \geq C(lpha) p^{-1/s}, \qquad orall p \in \mathbb{N}.$$

One can see that there are only *countably many* algebraic $\alpha = (\alpha_1, \ldots, \alpha_s)$.

1.2.2. Theorem by Cassels and Davenport and the result by Jarnik. In [3, 6] the following result is obtained.

Theorem 6. There exists a constant C_s for which there exists an uncountable set of elements $\alpha \in \mathbb{R}^s$ which do not have any ψ -approximation where $\psi(y) = C_s y^{-1/s}$.

V. Jarnik [12, 13] proved another result:

Theorem 7. Let ψ and λ be positive real-valued functions such that $\psi(y)y^{1/s}$ decreases as $y \to \infty$ and $\lambda(y) \to 0$ as $y \to \infty$. Then there exists an uncountable set of elements $\alpha \in \mathbb{R}^s$ for which there are infinitely many ψ -approximations, but only finitely many $\psi\lambda$ -approximations.

A review of other results can be found in [43, 10, 2].

1.2.3. Exact results in terms of the order of approximation. Generalizing the work [3] by means of chains of parallelepipeds [28, 50, 7, 8] we improve Jarnik's result.

Theorem 8. For $y \ge 1$, let ψ and ω such that Let $\psi(y) = y^{-1/s}\omega(y)$, where $\omega(y)$ decreases as $y \to \infty$ and

$$\omega(1) \leq 2^{-(s+1)(s+2)}(s!)^{-1/s}$$

Then there exists a vector $\alpha = (\alpha_1, \ldots, \alpha_s)$ which has infinitely many ψ -approximations but not any $2^{-(s+3)}\psi$ -approximation.

Theorem 9. Let ω and ψ be as in Theorem 8 and suppose that

$$\omega(1) \leq 2^{-(s+1)(s+3)}(s!)^{-1/s}$$

Then there exists an uncountable set of vectors $\alpha = (\alpha_1, \ldots, \alpha_s)$, each of them having infinitely many ψ -approximations but not any $2^{-(s+3)}\psi$ -approximation.

It follows that in Cassels Theorem 6 we may put

$$C_s = 2^{-(s+2)(s+3)}(s!)^{-1/s}.$$

We say that $\alpha = (\alpha_1, \ldots, \alpha_s)$ satisfies the ψ -condition if α has infinitely many ψ -approximations but not any $c\psi$ -approximation for some $c = c(\alpha)$

Theorem 10. Let ψ be defined by $\psi(y) = y^{-1/s}\omega(y)$ where ω is decreasing positive function. Then in any Jordan s-dimensional domain Ω with Vol $\Omega > 0$, there exists an uncountable set of $\alpha \in \mathbb{R}^s$ satisfying the ψ -condition.

Theorems 8, 9, 10 are discussed in [33].

1.2.4. Successive best approximations. Let $\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$. We define a best simultaneous approximation (b.a) of α to be any integer point $\zeta = (p, a_1, \ldots, a_s) \in \mathbb{Z}^{s+1}$ such that $\forall q, \forall (b_1, \ldots, b_s) \in \mathbb{Z}^s, 1 \leq q \leq p, (q, b_1, \ldots, b_s) \neq (p, a_1, \ldots, a_s)$, we have

$$D(\zeta)=\max_{j=1,\ldots,s}|plpha_j-a_j|<\max_{j=1,\ldots,s}|qlpha_j-b_j|.$$

Let $\alpha_j \notin \mathbb{Q}, j = 1, \ldots, s$. Then all b.a. of α form infinite sequences

$$\zeta^{
u}=(p^{
u},a_{1}^{
u},\ldots,a_{s}^{
u}), \
u=1,2,\ldots$$

where $p^1 < p^2 < ... < p^{\nu} < p^{\nu+1} < ...$ and

$$D(\zeta^1) > D(\zeta^2) > \ldots > D(\zeta^{\nu}) > D(\zeta^{\nu+1}) > \ldots$$

Let

$$M_{m
u}[lpha] = \left(egin{array}{ccccccc} p^{
u} & a_1^{
u} & \dots & a_s^{
u} \ \dots & \dots & \dots & \dots \ p^{
u+s} & a_1^{
u+s} & \dots & a_s^{
u+s} \end{array}
ight)$$

For $\alpha = (\alpha_1, \ldots, \alpha_s)$ satisfying $\alpha_j \notin \mathbb{Q}$, $j = 1, \ldots, s$, we define $R(\alpha) \in [2, s+1]$ to be the integer

 $R(lpha) = \min \ \left\{ n \ : \ ext{there exist a lattice } \Lambda \subseteq \mathbb{Z}^{s+1} ext{ with } \dim \Lambda = n \ ext{ and a natural }
u_0 ext{ such that } \zeta^{
u} \in \Lambda, \ orall
u >
u_0
ight\}.$

Proposition 11. Let s = 1. Then for any $\nu \ge 1$ we have det $M_{\nu}[\alpha] = \pm 1$ (rank $M_{\nu}[\alpha] = 2$, $\forall \nu$).

Proposition 12. For any $s \ge 1$ we have $R(\alpha) = \dim_{\mathbb{Z}} (\alpha_1, \ldots, \alpha_s, 1)$.

Proposition 13. Let s = 2 and α_1, α_2 such that $1, \alpha_1, \alpha_2$ are linearly independent over \mathbb{Z} . Then for infinitely many ν we have

$$\operatorname{rank} M_{\nu}[\alpha] = 3 = \dim_{\mathbb{Z}}(\alpha_1, \alpha_2, 1).$$

Proposition 11 - 13 can be easily verified. The following result is proved in [36].

Theorem 14. Let $s \geq 3$. There exists an uncountable set of elements $\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$ such that (i) $1, \alpha_1, \ldots, \alpha_s$ are linearly independent over \mathbb{Z} ,

(thus dim_Z($\alpha_1,\ldots,\alpha_s,1$) = s+1),

and

(ii) rank $M_{\nu}[\alpha] \leq 3$, $\forall \nu \geq 1$, (Hence for all $\nu \geq 1$ we have det $M_{\nu}[\alpha] = 0$).

Theorem 14 represents a counterexample to the conjecture of J.S. Lagarias [26]. It shows that the successive b.a. have no such an asymptotic property as a reader can see in Proposition 12. The idea of the proof was suggested to the author by N.P. Dolbilin.

1.3. Linear forms. Again, let $\alpha_1, \ldots, \alpha_s$ be real numbers such that $1, \alpha_1, \ldots, \alpha_s$ are linearly independent over \mathbb{Z} , and put $\alpha = (\alpha_1, \ldots, \alpha_s)$. For $m = (m_0, m_1, \ldots, m_s) \in \mathbb{Z}^{s+1} \setminus \{0\}$ we define

 $\zeta(m)=m_0+m_1lpha_1+\cdots+m_slpha_s,\qquad M=\max_{j=0,1,\ldots,s}|m_j|.$

A vector $m \in \mathbb{Z}^{s+1} \setminus \{0\}$ is a best approximation of α in sense of linear form if

$$\zeta(m) = \min_{\substack{n \in \mathbb{Z}^{s+1} \setminus \{0\} \\ \max_{j} |n_j| \leq M}} |\zeta(n)|.$$

All best approximations form sequences

$$\zeta_1 > \zeta_2 > \cdots > \zeta_{\nu} > \zeta_{\nu+1} > \cdots, \ M_1 < M_2 < \cdots < M_{\nu} < M_{\nu+1} < \cdots$$

where $m_{\nu} = (m_{0,\nu}, \ldots, m_{s,\nu})$ is the vector of the ν -th b.a., $\zeta_{\nu} = \zeta(m_{\nu})$ and $M_{\nu} = \max_{j} |m_{j,\nu}|$.

By Minkowski's Theorem we have $\zeta_{\nu} M_{\nu+1}^s \leq 1$.

1.3.1. Singular systems. The theorem on the order of approximations from $\S1.1.2$ does not admit multidimensional generalization in the sense of linear form.

Theorem 15 (see [29, 35]). Let s be an integer ≥ 1 and ψ a function such that $\psi(y)$ decreases to zero when y tends to infinity. Then there exists an uncountable set of elements $\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$ such that (i) $1, \alpha_1, \ldots, \alpha_s$ are linearly independent over \mathbb{Z} ,

and

(ii) the sequence of the best approximations of α satisfies

$$\zeta_{\nu} \leq \psi(M_{\nu+s-1}).$$

In the case s = 1 this theorem means that there are real numbers with any given order of the best approximations. In higher dimensions it gives something more.

Khinchin [15] defined a vector $\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$ to be a ψ -singular system if for any T > 0 the system

$$||m_1\alpha_1 + \cdots + m_s\alpha_s|| < \psi(T), \ M = \max_{1 \leq j \leq s} |m_j| < T$$

has a nontrivial solution $(m_1, m_2, \ldots, m_s) \in \mathbb{Z}^s$.

Proposition 16. System is ψ -singular $\iff \zeta_{\nu} < \psi(M_{\nu+1}), \forall \nu$.

1.3.2. Successive best approximations for linear form. Here we define Δ_{ν}^{s} to be the determinant of the successive best approximations

$$\Delta_{\nu}^{s} = \begin{vmatrix} m_{0,\nu} & m_{1,\nu} & \dots & m_{s,\nu} \\ \dots & \dots & \dots & \dots \\ m_{0,\nu+s} & m_{1,\nu+s} & \dots & m_{s,\nu+s} \end{vmatrix}$$

The proposition below follows from Minkowski theorem on convex body. It seems to me that it is a well-known fact, but I could not find the corresponding reference.

Proposition 17. Let s = 2. Then for infinitely many ν we have $\Delta_{\nu}^2 \neq 0$.

The theorem below was proved by the author in [35] by means of singular systems.

Theorem 18. Let $s \geq 3$. Then there exists a uncountable set of vectors $\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$ such that

(i) $1, \alpha_1, \ldots, \alpha_s$ are linearly independent over \mathbb{Z} ,

and

(ii) there exists a linear subspace $\mathcal{L}_{\alpha} \subset \mathbb{R}^{s+1}$, dim $\mathcal{L}_{\alpha} = 3$ satisfying the condition

$$m_{
u}\in \mathcal{L}_{lpha}\,,\;\; orall
u>
u_0.$$

We see that for $s \geq 3$ almost all best approximations may asymptotically lie in a three-dimensional plane but they cannot lie in two-dimensional plane. Of course these examples are degenerated in sense of measure. For almost all vectors $\alpha \in \mathbb{R}^s$ (in the sense of Lebesgue) best approximations are asymptotically (s + 1)-dimensional.

432

2. INTEGRALS FROM QUASIPERIODIC FUNCTIONS

In the text below we discuss applications of diophantine results to certain problems of uniform distribution of irrational rotations on torus. A full review of the methods and results of the theory of uniform distribution is given in [25].

2.1. Uniform distribution. Let **T** be the one-dimensional torus and $f : \mathbf{T}^s \to \mathbb{R}$ defined by the series

$$f(x_1,\ldots,x_s)=\sum_{\substack{m\in\mathbb{Z}^s\\m\neq 0}}f_m\exp\bigl(2\pi i(m_1x_1+\cdots+m_sx_s)\bigr).$$

We also define the integral

$$I(T, arphi) = I_{f, \omega}(T, arphi) = \int_0^T f(\omega_1 t + arphi_1, \dots, \omega_s t + arphi_s) \, dt.$$

where $\omega_1, \ldots, \omega_s \in \mathbb{R}$ are linearly independent over \mathbb{Z} , and $\varphi = (\varphi_1, \ldots, \varphi_s) \in \mathbb{R}^s$.

H. Weyl [51] proved that if f is a continuous function, then for any φ we have $I(T,\varphi) = o(T)$, $T \to \infty$. This equality holds uniformly in φ if we suppose moreover that f is smooth.

V.V. Kozlov conjectured that the integral $I(T, \varphi)$ is *recurrent* that is the following condition holds:

$$(*) \qquad \qquad \forall \varepsilon > 0, \quad \forall T, \quad \exists T^* > T: |I(T^*,\varphi)| < \varepsilon.$$

This conjecture is true when f is any trigonometric polynomial, and in this case (*) holds uniformly in φ . This implies that for any trigonometric polynomial f of finite degree, J^{∞} defined by

$$J^\infty(T)=J^\infty_{f,\omega}(T)=\sup_{arphi\in\mathbb{R}^s}|I(T,arphi)|,$$

is itself recurrent, that is

$$(\$) \qquad \qquad \forall \varepsilon > 0, \quad \forall T, \quad \exists T^* > T: |J^\infty(T^*)| < \varepsilon.$$

2.2. Case s = 2. In the two-dimensional case, the conjecture above was proved by V.V. Kozlov himself for functions $f \in C^2(\mathbf{T}^2)$ in [18] (see also [19]). It is also easy to see that when f is a smooth function, then (*) holds uniformly in φ , that is (\$) is true. E.A. Sidorov [44] obtained a similar result for "absolutely" continuous f.

2.3. The general result. The author [34] proved the conjecture in the general case:

Theorem 19. Suppose that

$$f(x_1,...,x_s) = \sum_{\substack{m \in \mathbb{Z}^s \ m
eq 0}} f_m \expig(2\pi i (m_1 x_1 + ... + m_s x_s)ig)$$

belongs to the class $C^{d}(\mathbf{T}^{s})$, where $d > Cs^{s^{3}}$ and $\omega_{1}, ..., \omega_{s}$ are linearly independent over \mathbb{Z} . Then for any φ , the integral $I(T, \varphi)$ satisfies (*).

The proof is based on consideration of best approximations in the sense of linear form (see $\S1.3.2$.).

2.4. Metric results. It is known [49, 48] that for almost all (in the sense of Lebesgue) vectors $\omega = (\omega_1, \ldots, \omega_s) \in \mathbb{R}^s$, if f is smooth enough, then the integral $I(T, \varphi)$ is bounded when $T \to \infty$ uniformly in φ . Hence the integral $I(T, \varphi)$ satisfies (*), uniformly in φ . But even in the case $s \geq 3$, this result is not universal.

Let Φ be a decreasing function and assume that the series $\sum_{m \in \mathbb{Z}} \Phi(m)$ converges. We define a periodic function $\Theta : \mathbf{T}^s \to \mathbb{R}$ to be of the type Φ if, the coefficients Θ_{m_1,\ldots,m_s} in the expansion

$$\Theta(x_1,\ldots,x_s)=\sum \Theta_{m_1,\ldots,m_s}e^{2\pi i m_1 x_1+\cdots+m_s x_s},$$

satisfy

$$|\Theta_{m_1,...,m_s}| \leq \Phi(M), \quad ext{where} \, \, M = \max_j |m_j|.$$

We consider

$$J^{\infty}(T) = J^{\infty}_{f,\omega}(T) = \max_{\varphi \in \mathbf{T}^s} \left| I_{f,\omega}(T,\varphi) \right|;$$
$$J^{2}(T) = J^{2}_{f,\omega}(T) = \left(\int_{T^s} \left| I_{f,\omega}(T,\varphi) \right|^2 d\varphi \right)^{1/2}.$$

The result below is proved in [29].

Theorem 20. Let $s \geq 3$. Then for any function Φ which decreases to zero as $y \to \infty$ and for any function ψ with $\psi(y) = o(1)$ as $y \to \infty$, there exist $\omega_1, \omega_2, \ldots, \omega_s$ which are linearly independent over \mathbb{Z} , and a function f of type Φ such that $\int_{\mathbf{T}^*} f(x) dx = 0$ and

$$J^l(T) \gg T\psi(T) \quad \forall T, \quad l=2,\infty.$$

We will reformulate Theorem 20 in the following way.

Theorem 21. Let $s \geq 3$, and $f : \mathbb{T}^s \to \mathbb{R}$ be smooth with zero mean value. Assume that in the expansion

$$f(x_1, \ldots, x_s) = \sum_{(m_1, \ldots, m_s) \neq 0} f_{m_1, \ldots, m_s} e^{2\pi i (m_1 x_1 + \cdots + m_s x_s)}$$

the coefficients f_{m_1,\ldots,m_s} , where $(m_1,\ldots,m_s) \neq 0$, are all different from zero.

Then there exist $\omega_1, \omega_2, \ldots, \omega_s$ which are linearly independent over \mathbb{Z} such that

$$J^l(t)\gg t\psi(t) \quad \forall \, t; \qquad l=2,\infty.$$

An improvement of the latter result was obtained recently by E.V. Kolomeikina [20].

One can see that the behaviour of integrals J_l in two-dimensional case radically differs from the case $s \ge 3$.

2.5. Odd functions. Sergei Konyagin's result. Recently, S. Konyagin [16] obtained the following result.

Theorem 22. The Kozlov's conjecture is true (that is (*) holds) for arbitrary $s \ge 1$ and any function f satisfying the condition

$$f(-x_1,\ldots,-x_s)=f(x_1,\ldots,x_s), \ f\in C^{ au}(\mathbf{T}^s), \ ausymp s 2^s.$$

2.6. The smoothness. In [42],[41] it is shown that we need some kind of smoothness conditions on f to insure that (*) is true : indeed in the twodimensional case (s = 2), there exists a function $f : \mathbf{T}^2 \to \mathbb{R}$ (with zero mean value) of the class $C \setminus C^1(\mathbf{T}^2)$ such that I(T,0) tends to infinity when $T \to \infty$ (with the choice $\omega_1 = 1$ and $\omega_2 = \sqrt{2}$). On the other hand, in [44] it is shown that when s = 2, a sufficient condition on f for having (*), is f to be absolutely continuous.

Developping an idea of D.V. Treshchev, the author, in [31], generalized Poincaré's example. He proved that for any real $\omega_1, \ldots, \omega_s$ which form a basis of a real algebraic field, there exists a function $f \in C^{s-2}(T^s) \setminus C^{s-1}(T^s)$ such that I(.,0) does not satisfy the property (*) with $\varphi = 0$.

One may find some results on algebraic numbers in [40] and [38]. Recently, S.V. Konyagin [16] proved that for some Liouville transcendental numbers, there exists $f \in C^d(\mathbf{T}^s)$ with $d \simeq 2^s/s$ such that (*) is not satisfied.

Some early results are reviewed in [37].

2.7. Vector-functions: counterexample in dimension s = 3. Let f^j : $\mathbf{T}^s \to \mathbb{R}, j = 1, 2$ be defined by

$$f^j(x_1,\ldots,x_s)=\sum_{k\in\mathbb{Z}^s\atop k
eq 0}f^j_k\exp(2\pi i(k_1x_1+\cdots+k_sx_s)).$$

For $\omega_1, \ldots, \omega_s \in \mathbb{R}$ be linearly independent over \mathbb{Z} , we put

$$I^j(T) = \int_0^T f^j(\omega_1 t, \ldots, \omega_s t) dt, \quad j = 1, 2.$$

The analogue of property (*) for the vector-integral $I = (I^1, I^2) : \mathbb{R} \to \mathbb{R}^2$ becomes

$$(\%) \qquad \qquad \forall \varepsilon > 0 \ \ \forall T \ \ \exists T^* > T: \ \ |I^1(T^*)| + |I^2(T^*)| < \varepsilon.$$

Proposition 23. In the case when s = 2 and f is a smooth vector-functions, then (%) holds.

Proposition 24. The analogue of Theorem 22 holds for vector-function, that is (%) is satisfied for any odd smooth vector-function f.

Let
$$\Phi : \mathbb{R}_+ \to \mathbb{R}_+$$
 be a positive function such that $\sum_{k \in \mathbb{Z}^s} \Phi(\max_{1 \le j \le s} |k_j|)$
converges. A vector-function $f = (f^1, f^2) : \mathbf{T}^s \to \mathbb{R}^2$ is defined to be a function of type Φ if we have

$$|f_k^j| \leq \Phi(\max_{1\leq j\leq s}|k_j|) \hspace{0.2cm} orall k, \hspace{0.2cm} j=1,2.$$

Recently, the author [34] constructed the following example.

Theorem 25. For any given positive function Φ , there exist a vector-function $f = (f^1, f^2) : \mathbf{T}^3 \to \mathbb{R}^2$ of the type Φ with zero mean value $(\int_{\mathbf{T}^3} f^j(x) dx = 0, j = 1, 2)$ and numbers $\omega_1, \omega_2, \omega_3$, which are linearly independent over \mathbb{Z} such that

$$|I^1(T)| + |I^2(T)| \to \infty$$
, as $T \to +\infty$.

Acknowledgment. The author thanks prof. M. Waldschmidt and prof. P. Voutier for their help in checking the language of the paper.

References

- A.D. Bruno & V.I. Parusnikov, Klein's polyhedra for two cubic forms considered by Davenport. Matemeticheskie Zametki 56 (1994), 9-27.
- [2] J.W.S. Cassels, An introduction to Diophantine approximation. Cambridge Tracts in Mathematics and Mathematical Physics 45. Cambridge University Press, New York, 1957, x+166 pp.
- [3] J.W.S. Cassels, Simultaneous Diophantine Approximations II. Proc. London Math. Soc.
 (3) 5 (1955), 435-448.
- [4] T.W. Cusick, Zaremba's conjecture and sums of the divisor functions. Math. Comp. 61 (1993), no. 203, 171–176.
- [5] T. W. Cusick, M.E. Flahive, The Markoff and Lagrange spectra. AMS, Providence, Math. surveys and monographs 30, 1989.
- [6] H. Davenport, Simultaneous Diophantine Approximations. Mathematika 1 (1954), 51-72.
- [7] B.N. Delone, An algorithm for the "divided cells" of a lattice. (Russian) Izvestiya Akad. Nauk SSSR. Ser. Mat. 11, (1947), 505-538.

436

- [8] B.N. Delone, The St. Petersburg school in the theory of numbers. (Russian) Akad. Nauk SSSR Naučno-Popularnaya Seriya. Izdat Akad. Nauk SSSR, Moscow-Leningrad, 1947, 421 pp.
- [9] P. Erdős, M. Gruber & J. Hammer, Lattice Points. Pitman Monographs and Surveys in Pure and Applied Mathematics, 39. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. viii+184 pp.
- [10] M. Gruber & C.G. Lekkerkerker, Geometry of Numbers. Amsterdam, 2nd edition, 1987.
- [11] Hua Loo Keng & Wang Yuan, Application of Number Theory to Numerical Analysis. Berlin; Heidelberg; N.Y.: Springer Verlag, 1981.
- [12] V. Jarnik, Uber die simultanen diophantischen Approximationen. Math. Zeitschr. 33 (1933), 505-543.
- [13] V. Jarnik, Un théorème d'existence pour les approximations diophantiennes. Enseign. Math. (2) 15 (1969), 171–175.
- [14] A.Ya. Khinchin, Continued fractions. Moscow, 1978.
- [15] A.Ya. Khinchin, Über eine Klasse linearer Diophantischer Approximationen. Rendiconti Circ. Mat. Palermo 50 (1926), 170–195.
- [16] S.V. Konyagin, On the recurrence of an integral of an odd conditionally periodic function. (Russian) Mat. Zametki 61 (1997), no. 4, 570-577; translation in Math. Notes 61 (1997), no. 3-4, 473-479.
- [17] S.V. Konyagin & N.G. Moshchevitin, Representation of rationals by finite continuous fractions. (Russian) Uspekhi Mat. Nauk 51 (1996), no. 4(310), 159–160.
- [18] V.V. Kozlov, The integrals of quasiperiodic functions. (Russian) Vestnik Moskov. Univ. Ser. I Mat. Meh. 1978, no. 1, 106–115.
- [19] V.V. Kozlov, Methods of qualitative analysis in solid body motion. Moscow, Moscow University, 1980.
- [20] E.V. Kolomeikina, Asymptotics of mean time values. Recent problems in theory of numbers and applications. Conference in Tula (Russia) 09 – 14.09.1996., Thesis., S. 80.
- [21] E.I. Korkina, Two-dimensional continued fractions. The simplest examples. (Russian) Trudy Mat. Inst. Steklov. 209 (1995), 143–166.
- [22] N.M. Korobov, Methods of theory of numbers in approximate analysis. Moscow, 1963.
- [23] N.M. Korobov, On some problems in theory of Diophantine approximations. (Russian) Uspekhi Mat. Nauk 22 (1967), 83-118.
- [24] N.M. Korobov, Trigonometric sums and their applications. Moscow, 1989.
- [25] L. Kuipers & H. Niederreiter, Uniformly distributed sequences. N.Y., 1974.
- [26] J.S. Lagarias, Best simultaneous Diophantine approximation II. Pac. J. Math. 102 (1982), 61–88.
- [27] G. Lachaud, Polyèdre d'Arnold et voile d'un cône simplicial : analogues du théorème de Lagrange. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 8, 711-716.
- [28] H. Minkowski, Généralisation de la théorie des fractions continues. Ann. Ecole norm. (3) 13 (1896), 41–60.
- [29] N.G. Moshchevitin, Distribution of values of linear functions and asymptotic behaviour of trajectories of some dynamical systems. (Russian) Matematicheskie Zametki 58 (1995), 394-410.
- [30] N.G. Moshchevitin, On the recurrence of an integral of a smooth three-frequency conditionally periodic function. (Russian) Mat. Zametki 58 (1995), no. 5, 723-735.
- [31] N.G. Moshchevitin, Nonrecurrence of an integral of a conditionally periodic function. (Russian) Mat. Zametki 49 (1991), no. 6, 138–140.
- [32] N.G. Moshchevitin, On representation of rationals as continuous fractions and sets free from arithmetic progressions. (Russian) Matematicheskie Zapiski 2 (1996), 99–109.
- [33] N.G. Moshchevitin, On simultaneous Diophantine approximations. Matemticheskie Zametki 61 (1997), no. 5, 706-716.
- [34] N.G. Moshchevitin, On the recurrence of an integral of a smooth conditionally periodic function. (Russian) Mat. Zametki 63 (1998), no. 5, 737-748.
- [35] N.G. Moshchevitin, On geometry of the best approximations. Doklady Rossiiskoi Akademii Nauk 359 (1998), 587-589.

- [36] N.G. Moshchevitin, On best joint approximations. (Russian) Uspekhi Mat. Nauk 51 (1996), no. 6(312), 213-214.
- [37] N.G. Moshchevitin, Recent results on asymptotic behaviour of integrals of quasiperiodic functions. Amer. Math. Soc. Transl. (2) 168 (1995), 201–209.
- [38] H. Niederreiter, Application of Diophantine Approximation to Numerical Integration. in book Dioph. Appr. and Appl. ed. Osgood C. N.Y., Academic Press, 1973, 129 – 199.
- [39] H. Niederreiter, Dyadic Fractions with Small Partial Quotients. Monatsh. Math. 101 (1986), 309-315.
- [40] L.G. Peck, On Uniform Distribution of Algebraic Numbers. Proc. Amer. Math. Soc. 4 (1953), 440-443.
- [41] H. Poincaré, Sur les séries trigonométriques. Comptes Rendus 101 (1885), 1131-1134.
- [42] H. Poincaré On curves defined by differential equations. (Russian transl.) Moscow-Leningrad, 1947.
- [43] W. Schmidt, Diophantine approximation. Lecture Notes in Mathematics 785. Springer, Berlin, 1980. x+299 pp.
- [44] E.A. Sidorov, On conditions of uniform Poisson stability of cylindrical systems. Uspekhi Mat. Nauk 34 (1979), no. 6(210), 184–188.
- [45] B.F. Skubenko, Minima of decomposable cubic forms in 3 variables. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 168 (1988), 125-139.
- [46] B.F. Skubenko, Minima of decomposable forms of degree n in n variables. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 183 (1990), 142–154.
- [47] V.G. Sprindzuk, Metric theory of diophantine approximations. Moscow, 1977.
- [48] V.G. Sprindzuk, Asymptotic behavior of integrals of quasiperiodic functions. (Russian) Differential Equations 3 (1967), 862–868.
- [49] I.L. Verbitzki, Estimates of the remainder term in Kronecker theorem on approximations. Theoriia Functzii, Funktzianal. Analiz i ih prilogeniia, Harkov, 5 (1967), 84–98.
- [50] G.F. Voronoi, On one generalization of continued fractions algorithm. Selected works T.1, Kiev, 1952.
- [51] G. Weyl, Über die Gleichverteliung von Zahlen mod. Eins. Math. Ann. 77 (1916), 313-352.
- [52] S.K. Zaremba, La méthode des "bons treillis" pour le calcul des intégrales multiples. In : Appl. of Number Theory to Numerical Analysis. ed. S.K. Zaremba; N.Y., 1972, 39-119.

Nikolai G. MOSHCHEVITIN

Department of Theory of Numbers

- **Faculty of Mathematics & mechanics**
- Moscow State University

Vorobiovy Gory

119899, Moscow, Russia

E-mail : MOSH@nw.math.msu.su