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Continued Fractions, Multidimensional

Diophantine Approximations and Applications

par NIKOLAI G. MOSHCHEVITIN

RÉSUMÉ. Cet article rassemble des résultats généraux d’appro-
ximation diophantienne, sur les meilleures approximations et leurs
applications à la théorie de répartition uniforme.

ABSTRACT. This paper is a brief review of some general Dio-
phantine results, best approximations and their applications to
the theory of uniform distribution.

1. DIOPHANTINE APPROXIMATIONS.

1.1. One-dimensional approximations.

1.1.1. Lagrange spectrum. Let a be an irrational number. Dirichlet’s theo-
rem states that there are infinitely many positive integers q such that

holds, where I I - I I denotes the distance to the nearest integer. Hurwitz

obtained a more precise result: for any irrational number a, the inequality

has infinitely many solutions in q. Moreover, there is a countable set of
numbers a for which this inequality is an exact one, that is, for any positive
c there are only finitely positive integers q such that the inequality

holds.
We define the Lagrange spectrum to be the set of the real numbers A for

which there exists a = a(A) such that the inequality
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has infinitely many solutions, and for any positive c the inequality

’1

has only a finite number of solutions. It is well-known that Lagrange spec-
trum has a discrete part

i i

y- y-

and the minimal A for which there are uncountably many a = a(a) is

A = 1/3. Also it is well-known that Lagrange spectrum contains an interval
[0,A1.

Moreover, for any decreasing function 0 satisfying 0(y) = o(y-1), as y
tends to infinity, there is an uncountable set of real numbers a such that
the inequality

has infinitely many solutions, but for any c &#x3E; 0, the stronger inequality

has only a finite number of solutions.
One can find the above results in [5]. All of them can be obtained from

the continued fraction expansion [14].
1.1.2. Best approximations. and continued fractions,. Any real number a
may be written as 

...

...

where bo E Z and, for j &#x3E; 0, bj are a nonnegative integers. For convenience,
we use the notation

a = 

This representation is infinite and unique when a is irrational. If a is

rational, we have a = (bo; bl, b2, b3, ... , bt], and this representation is unique
if we impose the condition bt ~ 0,1.

Convergents to a of the order v are defined as

A simple theorem states that these fraction and only these form the best
approximations, that is the relation

holds for the denominators q, and only for them (see [14J). We now give
two other easy facts.
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Theorem 1. We have

Ilqllall ~ (in order of approximation).
Proposition 2. We have

1.1.3. Klein polygons. We now consider the integer lattice Z2 C Jae2. Let

(q, a) e Z be a primitive point (gcd(q, a) = 1) and q, a &#x3E; 0. We define the
two angles cp+ and p- by

I I

B~ ..1

Klein polygons K+ (a, q) and K- (a, q) are defined to be respectively the
following borders 

- - ft

and

which consist of finite (nontrivial) intervals.
We now define 0(a, q) to be the domain:

We have

Theorem 3 ([7, 9]). 1. The vertices of 7C_ (a, q), (different from (q, a)) are
integer points of the form (q2p,P2p), where (P2p./q2p) is the 2p-th convergent
to a/q.
2. The vertices of K:+(a,q) (different from (q, a)) are integer points of the
form (q2v+l,P2v+l), i where P2v+l/Q2v+l is the convergent to a/q.
3. If (u, v) E (1C+(a, q) U 1C_ (d, q)) fl 7G2 is an integers point then v/u is a
convergent to a/q or one of the intermediate fractions (wp, +

qv-l), 1  w  b,+,.
4. 0(a, q) fl 7Gz = 0.
One can easily verify the same results for infinite continued fractions (i.e.

for irrational numbers).
Recently, several papers [1, 21, 45, 46, 271 devoted to multidimensional

generalization of Klein polygons have appeared. Unfortunately one must
notice that there is something incorrect in papers [45, 46].
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1.1.4. Representation of rationals. The rationals a/q with bounded partial
quotients bi are of great interest (see [22, 23, 24, 11]).

Let N(k, q) be the number of integers A, 1  A  q, gcd(A, q) = 1 such
that any component bi of the continued fraction expansion

is bounded by k: bi  k, i = 1, ... , n(A). It is known ([22, 4, 52]) that
if k &#x3E; q log q with 7 sufficiently large, then N(k, q) &#x3E; 1. Moreover we can
show that for almost all positive integers q and A with 1  A  q, all partial
quotients are bounded by O(log q).
By the way we may recall a famous and still open conjecture which asserts
that for any q &#x3E; 1, we have N(6, q) &#x3E; 1. However it is known that the

conjecture holds when q = 2Q or q = 3’ (~39~).
Sergei Konyagin (see [17]), by means of Farey fractions, proved the fol-

lowing upper bound for N(k, q):

Theorem 4. For any y  1 and for any k &#x3E; k( 1) we have

mhere cp denotes the Euler function.

We define the sequence A1  A2  ...  Ad to be an almost arithmetic
progression if

’" 
- 

’" 
_

In [32], the author shows that numbers with bounded partial quotients
cannot appear very regularly: they cannot form long almost arithmetic
progressions. The following theorem improves the result from ~32~ .
Theorem 5. For d &#x3E; 3, let Ao, ... , Ad be positive integers. Suppose

(i) 0  Ao  ...  Ad f orm an almost arithmetic progression;
(ii) gcd(Ai, q) = 1, i = 0, ... , d.

Let Av/q = [~,1)" - ~ Then there exist vo and ito such that

.i-neorem 5 is provea oy means oi mem polygons, me same result is
true for real-valued (not integer) almost arithmetic progressions and in the
last case S. Konyagin showed that the result for real-valued progressions is
exact in order.
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1.2. Simultaneous approximations. Let 0 : 1~ --~ R+ be a positive
and real-valued function. For given a - (al, ... , as) E W, a positive
integer p is said to be a 0-approximation of a, if

1.2.1. Dirichlet and Liouville’s theorems. Dirichlet’s theorem states that for

any a - (al , ... , E R , where 1, al , ... , a$ linearly independent over
Z, there are infinitely many 0-approximations of a with 0(y) = y-1/3.
On the other hand, Liouville’s theorem ([2], ch.5) shows that for any

a = (al, ... , as) E R’ such that 1, at, ... , as form a basis of a real algebraic
field of degree s + 1, there exists C(a) such that

One can see that there are only countably many algebraic a = (01, ... , a~).

1.2.2. Theorem by Cassels and Davenport and the result by Jarnik. In [3, 61
the following result is obtained.

Theorem 6. There exists a constant C, for which there exists an uncount-
able set of elements a which do not have any 0-approximation where
v

V. Jarnik [12, 13] proved another result:

Theorem 7. and A be positive real-valued functions such that 
decreases as y -&#x3E; oo and A(y) -&#x3E; 0 as y - oo. Then there exists an un-

countable set of elements a E R-’ for which there are infinitely many c-
approximations., but only finitely many OA -approximations.

A review of other results can be found in [43, 10, 2].

1.2.3. Exact results in termes of the order of approximation. Generalizing
the work [3] by means of chains of parallelepipeds [28, 50, 7, 8] we improve
Jarnik’s result.

Theorem 8. For y &#x3E; 1, and w such that Let 0(y) = where

w(y) decreases as y - oo and

Then there exists a vector a = (al, ... , as) which has infinitely many 1/J-
approximations but not any 
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Theorem 9. Let w and 0 be as in Theorems 8 and suppose that

- , -, - - , - . , 
.

Then there exists an uncountable set of vectors a = (a,, - .. , as), each

of them having infinitely many 0 -approximations but not any 2-d+3-
approximation.

It follows that in Cassels Theorem 6 we may put

We say that a = (at,... , satisfies the 0-condition if a has infinitely
many 0-approximations but not any c~-approximation for some c = c(a)
Theorem 10. Let 0 be defined by 1/J(y) = y-¡/sú)(y) where cv is decreas-
ing positive function. Then in any Jordan s-dimensional domain 0 with
Vol 0 &#x3E; 0, there exists an uncountable set of a E satisfying the 1/J-
condition.

Theorems 8, 9, 10 are discussed in [33].
1.2.4. Successive best approximations. Let a = (al, ... , as) E We de-
fine a best simultaneous approximations (b.a) of a to be any integer point
, = (p, aI, ... , E such that Vq, ‘d (bl , ..., b~ ) 1 ~ q  p,
(q, b,7 * * * 7 bus) 54 (p,al,... ti°3 ) , we have

Let aj 0 Q, j = 1, ... , s . Then all b.a. of a form infinite sequences

B ~ 1 
- 

~ ,

For a = (al, ... , as) satisfying aj ft Q, j = 1, ... , s, we define R(a) E
[2, s + 1] to be the integer

R(a) = min In : there exist a lattice A C zS+1 with dim A = n

and a natural vo such that C’ E A, tlv &#x3E; 

Proposition 11. Let s = 1. Then for any v &#x3E; 1 we have det ::l:1

(rank M, [a] = 2, t/v).

Proposition 12. For any s &#x3E; 1 we have R(a) = dimz (al, ... , as, 1).
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Proposition 13. Let s = 2 and al, a2 such that 1, al, a2 are linearly in-
dependent over Z. Then f or infinitel y man y v we have

Proposition 11 - 13 can be easily verified. The following result is proved
in [36].
Theorem 14. Let s &#x3E; 3. There exists an uncountable set of elements
cx = (a,,... such that

(i) 1, al , ... , are linearly ind epend ent over Z,
(thus dimz (a,, ... , a~,1) = s + 1),

and

(ii) 3, V v &#x3E; 1,
(Hence for all v &#x3E; 1 we have det = 0) .
Theorem 14 represents a counterexample to the conjecture of J.S. La-

garias [26]. It shows that the successive b.a. have no such an asymptotic
property as a reader can see in Proposition 12. The idea of the proof was
suggested to the author by N.P. Dolbilin.

1.3. Linear forms. Again, let a1, ... , as be real numbers such that 1, aI,
... , are linearly independent over Z, and put a = 
For m = (mo, ml , ... , E 7~ ~+1 ~ 101 we define

A vector m E 101 is a best approximation of a in sense of linear form
if

All best approximations form sequences

where m, = (mow, ... , ms,lI) is the vector of the v-th b.a., (II (m,) and
maxj 

By Minkowski’s Theorem we have ~’v Mv+ 1  1.

1.3.1. S’ingular systems. The theorem on the order of approximations from
§ l.1.2 does not admit multidimensional generalization in the sense of linear
form.

Theorem 15 (see [29, 35]). Let s be an integer &#x3E; 1 and 0 a function such
that 0(y) decreases to zero when y tends to infinity. Then there exists an

uncountable set of elements a = (al, ... , as) E 11~~ such that
(i) 1, as , ... , a~ are linearl y independent over Z,
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and

(ii) the sequence of the best approximations of a satisfies

In the case s = 1 this theorem means that there are real numbers with

any given order of the best approximations. In higher dimensions it gives
something more.

Khinchin [15] defined a vector a = (al, - - ., as ) E Jae" to be a 0-singular
system if for any T &#x3E; 0 the system

has a nontrivial solution (mi, m2, ... , m$) E Zs.

Proposition 16. System is 1/J-singular 4==:t, (v  Vv.

1.3.2. Successive best approximations for linear f orm. Here we define Ag to
be the determinant of the successive best approximations

The proposition below follows from Minkowski theorem on convex body.
It seems to me that it is a well-known fact, but I could not find the corre-
sponding reference.

Proposition 17. Let s = 2. Then for infinitely many v we have A’ 54 0.

The theorem below was proved by the author in [35] by means of singular
systems.

Theorem 18. Lets &#x3E; 3. Then there exists a uncountable set of vectors
a = (al, ... , as) E R~ such that
(i) l, al, ... , as are linearly independent. over Z,
and

(ii) there exists a linear subspace £0. C dim £0. = 3 satisfying the
condition

We see that for s &#x3E; 3 almost all best approximations may asymptoti-
cally lie in a three-dimensional plane but they cannot lie in two-dimensional
plane. Of course these examples are degenerated in sense of measure. For
almost all vectors a E R’ (in the sense of Lebesgue) best approximations
are asymptotically (s + 1)-dimensional.
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2. INTEGRALS FROM QUASIPERIODIC FUNCTIONS

In the text below we discuss applications of diophantine results to certain
problems of uniform distribution of irrational rotations on torus. A full
review of the methods and results of the theory of uniform distribution is
given in [25].

2.1. Uniform distribution. Let T be the one-dimensional torus and f :
T’ -7 R defined by the series

We also define the integral

where o;i,... c~9 E R are linearly independent over Z, and p = (cpl, ... , w.,)
E

H. Weyl [51] proved that if f is a continuous function, then for any p we
have I(T, cp) = o(T), T - oo. This equality holds uniformly in cp if we
suppose moreover that f is smooth.

V.V. Kozlov conjectured that the integral I(T, cp) is recurrent that is the
following condition holds:

This conjecture is true when f is any trigonometric polynomial, and in
this case (*) holds uniformly in cp. This implies that for any trigonometric
polynomial f of finite degree, J°° defined by

is itself recurrent, that is

2.2. Case s = 2. In the two-dimensional case, the conjecture above was
proved by V.V. Kozlov himself for functions f E C2(Tz) in [18] (see also
~19~). It is also easy to see that when f is a smooth function, then (*) holds
uniformly in cp, that is ($) is true. E.A. Sidorov [44] obtained a similar
result for "absolutely" continuous f.
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2.3. The general result. The author [34] proved the conjecture in the
general case:

Theorem 19. Suppose that

belongs to the class Cd(T’), where d &#x3E; CS,3 and WI, ...,w, are linearly
ind epend ent over Z. Then f or any p, the integral I(T, Sp) satisfies (*).

The proof is based on consideration of best approximations in the sense
of linear form (see § 1. 3.2. ) .

2.4. Metric results. It is known [49, 48] that for almost all (in the sense
of Lebesgue) vectors w = (wl, ... , ws ) E R~, if f is smooth enough, then
the integral I(T, Sp) is bounded when T e oo uniformly in cp. Hence the

integral 1 (T, c,p) satisfies (*), uniformly in cp. But even in the case s &#x3E; 3,
this result is not universal.

Let $ be a decreasing function and assume that the series 
converges. We define a periodic function O : T-’ --7 R to be of the type E if,
the coefficients 0~i,...,m in the expansion

,V J. ~ ,

The result below is proved in [29].

Theorem 20. Let s &#x3E; 3. Then for any function 4D which decreases to zero
as y -3 oo and for any function 0 with = 0(1) as y ~ oo, there exist
W1,W2,... w8 which are linearly independent over Z, and a function f of
type 4D such that f (x) dx = 0 and

We will reformulate Theorem 20 in the following way.
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Theorem 21. Let s &#x3E; 3, and f : T8 -+ R be smooth with zero mean
value. Assume that in the expansion

the coefficients f,.,z1 ~", ~ma , where (rnl , ... , 54 0, are all different from
zero.

Then there exist WI, (û2, ... , £Us which are linearly independent over Z such
that

An improvement of the latter result was obtained recently by E.V. Kolo-
meikina [20].
One can see that the behaviour of integrals Jl in two-dimensional case

radically differs from the case s &#x3E; 3.

2.5. Odd functions. Sergei Konyagin’s result. Recently, S. Konyagin
[16] obtained the following result.

Theorem 22. The Kozlov’s conjecture is true (that is (*) holds) for arbi-
trary s &#x3E; 1 and any function f satisfying the condition

2.6. The smoothness. In [42],[41] it is shown that we need some kind of
smoothness conditions on f to insure that (*) is true : indeed in the two-
dimensional case (s = 2), there exists a function f : T2 --+ If8 (with zero
mean value) of the class such that I(T, 0) tends to infinity when
T - oo (with the choice wi = 1 and c.~2 = v’2). On the other hand, in [44]
it is shown that when s = 2, a sufficient condition on f for having (*), is f
to be absolutely continuous.

Developping an idea of D.V. Treshchev, the author, in [31], generalized
Poincare’s example. He proved that for any real wl, ... , c~8 which form a
basis of a real algebraic field, there exists a function f E C’-2(T8)BCe-1(T’)
such that 1(., 0) does not satisfy the property (*) with cp = 0.

One may find some results on algebraic numbers in [40] and [38]. Re-

cently, S.V. Konyagin [16] proved that for some Liouville transcendental
numbers, there exists f E with d ~ 28/s such that (*) is not satis-
fied.
Some early results are reviewed in [37].

2.7. Vector-functions: counterexample in dimension s = 3. Let f :
T’ -~ = 1,2 be defined by



436

For a~i,... ws E R be linearly independent over Z, we put

The analogue of property (*) for the vector-integral I = (Il, I2) : If8 -~ R2
becomes

Proposition 23. In the case when s = 2 and f is a smooth vector-func-
tions, then holds.

Proposition 24. The analogue of Theorem 22 holds for vector-function,
that is (%) is satisfied for any odd smooth vector-function f .

Let 4k : : Il4 II8 F be a positive function such that L 4,(mM ’ " ’ ’i -"Z
converges. A vector-function f = ( f 1, f 2) ; T-1 -+ II82 is defined to be a
function of type E if we have

Recently, the author [34] constructed the following example.

Theorem 25. For any given positive function ~, there exist a vector-func-
tion f = ( f 1, f 2) ; T3 -+ of the zuith zero mean value 
= 0, j = 1, 2) and numbers c.y, W2 c.~3, which are linearly independent over Z
such that

Acknowledgment. The author thanks prof. M. Waldschmidt and prof.
P. Voutier for their help in checking the language of the paper.
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