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Class invariants by Shimura’s reciprocity law

par ALICE GEE

RESUME. On applique la loi de réciprocité de Shimura pour dé-
cider quand les valeurs des fonctions modulaires de haut niveau
peuvent étre utilisées pour engendrer le corps de classes de Hilbert
d’'un corps quadratique imaginaire. Lorsque c’est le cas, nous
montrons aussi comment trouver le polynéme correspondant. Cela
donne une preuve de certaines formules conjecturales de Morain
et Zagier relatives a ces polynémes.

ABSTRACT. We apply the Shimura reciprocity law to determine
when values of modular functions of higher level can be used to
generate the Hilbert class field of an imaginary quadratic field. In
addition, we show how to find the corresponding polynomial in
these cases. This yields a proof for conjectural formulas of Morain
and Zagier concerning such polynomials.

1. INTRODUCTION

Let K be an imaginary quadratic number field of discriminant d with ring
of integers O = Z[#]. The first main theorem of complex multiplication says
that the modular invariant j(O) = j(0) generates the Hilbert class field over
K.

Weber noticed that in many cases, the Hilbert class field can be generated
by modular functions of higher level such as 2, 73, and the so-called Weber
functions f, {1, and fo. We will also study Weber’s resolvents wy and w3 of
level 5. These functions are defined in §4. When h is a modular function
of level N, Weber calls the value h(0) of a modular function h at 6 a class
invariant whenever h(0) and j(6) generate the same field over K.

Class invariants can be useful because j(O) provides an ungainy descrip-
tion of the Hilbert class field from a computational point of view. Its min-
imum polynomial H,; € Z[X] has zeroes at j(a), with a ranging over the
ideal classes of 0. As a function on the complex upper half plane, the
value of j(#) grows exponentially with the imaginary part of § so that the
coefficients of H; grow exponentially with d. Even worse, the coefficients
of Hy are unwieldy even when d is of modest size. For example, the class
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polynomial for d = —71 is

H_71 = X7 + 313645809715 X® — 3091990138604570 X°
+ 98394038810047812049302 X*
— 823534263439730779968091389 X3

+ 5138800366453976780323726329446 X2
—425319473946139603274605151187659 X
+ 737707086760731113357714241006081263.

However, taking 6 = _HT V=Tl ' the function values (3v2(6), C4sf(9) and
w3 (@) are all class invariants. These have minimum polynomials

&P = X7 46745 X® — 327467 X° + 51857115 X* + 2319299751 X3
+41264582513 X2 — 307873876442 X + 903568991567

@ = X7+ 221 X® 43999 X5 + 79447 X* + 628970 X
+3746281 X? + 12033163 X + 19868711

fé«;sh(e) = X'+ X6 - X5 _X4_X34X24+2X—1.

In this paper, we apply the Shimura reciprocity law, which describes the
action of the idéle class group of K on the values of modular functions h
taken at 6§ € K, to the problem of finding and computing class invariants.

The reciprocity law provides a method of systematically determining the
instances when a given function yields a class invariant. By applying our
method to Weber’s functions s, y2, f, f1, f2 we recover theorems of the type
found in [7]. This treatment allows us dispense with the need for ad hoc
arguments which appear even in the modern treatments [1] and [4], both of
which pre-date Shimura’s 1970 theorem.

Shimura’s reciprocity law also describes the action of the class group
Cl(O) on a class invariant h(#). This provides an algorithm for computing
the minimum polynomial of a class invariant numerically. We apply the
algorithm to prove some conjectural formulas of Morain [3] and Zagier [8]
regarding the conjugates of class invariants arising from 3 and fa.

This paper is part of my thesis, which is being written at the University of
Amsterdam. I have calculated the polynomials for the class invariants aris-
ing from the functions considered in this paper for the imaginary quadratic
field discriminants d when —1000 < d < 0. The tables are not appended
here.
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2. THE MODULAR FUNCTION FIELD F

Let H denote the complex upper half plane with completion H* = HUP! (Q).
A matrix (§ g) € SLa(Z) acts on H* as the fractional linear transformation
2 250

When N is a positive integer, let I'y C SLy(Z) denote the kernel of the
map SLy(Z) — SL2(Z/NZ) obtained by reducing coefficients modulo N.
The quotient space X (N) = I'y\H* is a Galois cover of P!(C) with group
SLo(Z/NZ)/{£1}. At the cusp corresponding to the point at infinity in
H*, we have the local parameter ¢'/¥ = ¢272/N_If p is a meromorphic
function on X (NV), its the Laurent series expansion in the parameter ¢'/V
is called the Fourier expansion of h.

We embed the algebraic closure Q of the rational numbers in C and fix
(n to be the root of unity 2™V The algebraic curve X (N) can be defined
over Q({n), and we let Fiy be its function field over Q({x). It is the field
of meromorphic functions on X (NN) having Fourier coefficients in Q(¢y).
One has F; = Q(j), and defines the automorphic function field F as the
union F = Un>1Fn. We will describe the infinite Galois extension F; C F
presently.

First consider the finite Galois extension F; C Fy. Let ay € SLy(Z/NZ)
represent the I'y-equivalence class of a fractional linear transformation «
on H*. For h € Fy the action h®N = h o ¢ is well-defined and induces an
isomorphism

SLy(Z/NZ)/{£1} ~ Gal(Fy/F1((n)) = Gal(C Fy /C Fy).

For d € (Z/NZ)*, let o4 denote the automorphism of Q({x) given by (n —
Cj‘f,. The action of o4 gives rise to a natural isomorphism

Gal(F1(Cn)/F1) =~ Gal(Q(¢n)/Q) = (Z/NZ)*

which we can lift to Fjy in the following way. If h € Fy has Fourier ex-
pansion ) ck-q% € @(CN)((q%)) then ), ad(ck)-q%\c/‘ is again a Fourier
expansion of some function in Fy which we denote by h%¢. Then h + h%
defines a group action of (Z/NZ)* on Fy. The invariant field Fy g is the
subfield of functions in Fny having Fourier coefficients in Q, so we have
Fno N Fi(¢n) = F1 in the following diagram
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of fields. Define the subgroup
Gy ={(}3) | d€ (Z/NZ)*} C GL2(Z/NZ).

The map (Z/NZ)* = Gy is a section of the determinant map on GLo(Z/NZ)
and the isomorphism Gy =~ Gal(FN / FN,Q) defines the action of Gy on Fy.
We obtain the following commutative diagram with exact rows and columns:

{+1} — SLy(Z/NZ) — Gal(Fx/Fi(Cy)) — 1

xS 1 {
{j:l} — GLQ(Z/NZ) — Gal(FN/Fl) — 1
i3 Jdet

4
1 —  (Z/Nz)* — Gal(F(N)/F) - L
Passing to the projective limit yields the exact sequence

(1) 1 — {£1} — GLy(Z) — Gal(F/F,) — 1.

3. SHIMURA RECIPROCITY OVER THE HILBERT CLASS FIELD

Let O = Z[0] be the ring of integers of K, an imaginary quadratic number
field. We assume K is embedded in the complex plane with 8 € H.

When p € Z is a prime number we will use the notation K, = Q, ®q¢ K
and Op = Z,®z 0. For a prime ideal p C O lying over p, let K, denote the
completion of K at p. Then K, is canonically isomorphic to lep K, We
use the rational primes p € Z to index the group of finite idéles

I =1 k;
p

of K. The restricted product is taken with respect to the subgroups O, C
K.

P

Let [~, K] denote the Artin map on Ji,. We view K* to be embedded
along the diagonal of Jﬁ{. In the case that K is an imaginary quadratic
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number field, the exact sequence of class field theory takes on the following
simple form:

[~.K]

2) 1 — K — gt D8 Gaixeb k) — 1.
K

If F C F is a subfield of the automorphic function field, let K(F(8))
denote the field extension of K obtained by adjoining all of the function
values h(0) for which h € F is pole-free at 6.

Theorem 1 (First main theorem of complex multiplication). Let O = Z[6)]
be the ring of integers of an imaginary quadratic number field K. Then j(6)
generates the Hilbert class field over K. The mazimal abelian extension K3°
is equal to K(F(0)), and the sequence

3) 1— 0" — [[0; =5 Gal(K*/K(j(6)) — 1
¥4

is exact. The ray class field of conductor N over K is K(Fn(6)). The
subgroup of [[, Op which acts trivially on K(Fn(0)) with respect to the
Artin map is generated by O* and [, (1+N-0p)N (9;).

Reference. Class field theory and [2; 10.1, Corollary to Theorem 2]. a

We now consider the map that relates the exact sequences (3) and (1). For
every prime number p € Z, let

(90)p : K; — GL2(Qp)

be the injection that sends z, € K, to the matrix in GL2(@Qp) that rep-
resents multiplication by z, with respect to the Q,-basis [0, 1] for K. In
other words, (gs)p(zp) € GL2(Qp) is the matrix that satisfies the relation

(aonten (7)== (7)-

If # has minimum polynomial f& = X2 + BX + C, then for sp,t, € Q, we
have

— B —C-
(4) (90)p : 5p0 + tp (tp °r SP) :
Sp tp
On Ji = H; K, we obtain an injective product map
!
(5) g0 = ] [(90)p - Tk = ]| GL2(Qy).
P P

The restricted product is taken with respect to the subgroups GL3(Zp) C
GL2(Qy). We write [[,, GL2(Zp) = GL2(Z) and consider the pre-image

97 (GL2(2)) = {z € Jk | go(x) € GLy(2)}.
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From (4) we note
'(GLy(Z H

because 6 is an algebraic integer. Until sectlon 10, we only need the restric-
tion

g9 - HO; — GLQ(Z)
p

of the map gg. In combination with (1) and (3), it yields the diagram

1 — 00 — Loy 28 cak®/k(e)) — 1
l»
1 — {1} — GLy(Z) — Gal(F/Fy) — 1L

Theorem 2 (Shimura reciprocity law). Let O = Z[6] be the ring of inte-
gers of an imaginary quadratic number field K. For h € Fand = € Hp O
we have

h(6)E™ K] = ploe(@) (g).

Suppose G C GLZ(Z) 1 an open subgroup with fized field F C F. With re-
spect to the Artin map, the subgroup of 11, Oy that acts trivially on K(F(0))

is generated by O* and 90 ={z€ll,0; | g6(z) € G}.
Reference. [5; Theorem 6.31, Proposition 6.33]. g

Corollary 3. Let O = Z[6] be the ring of integers of an imaginary qua-
dratic number field K of discriminant d < —4. Suppose h € F does not have
a pole at 6 and suppose that Q(j) C Q(h). The function value h() is a
class invariant if and only if every element of the image gg[Hp (9;] C GL2 (Z)
acts trivially on h.

Proof. The open subgroup Stabgp) = {a € GLy(Z) | h* = h} has fixed
field Q(h) C F. The pre-image g, (StabQ(h)) contains O* = {£1}, so
g;l(Stab@(h C [1, Oy is equal to the inverse image of Gal(K3/K (h(9)))
with respect to the Artln map. Thus k(@) is a class invariant if and only if
the equality g, 1(Staby) = Hp O, holds. This last equality is equivalent to
the condition go[[ ], O;] C Staby, by the injectivity of gg. a

The infinite groups [[, 0, and GLy(Z) occuring in Corollary 3 are not
directly suited for performing explicit computations. In practice, for h € Fy
and 6 an algebraic integer we can reduce modulo N and work with their
finite quotient groups.

If N is a positive integer let Uy C GLy(Z) be the kernel of the natural
map GLo(Z) — GL2(Z/NZ) obtained by reducing coefficients modulo N.
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We have Uy = Stabp, where Stabp, is the inverse image of Gal(F/Fy) in
GL2(Z). Also, we observe

g7 Uw) = [[ (1 +N-0,)n0y).
P
Thus with respect to the Artin map, the subgroup of Hp O, that acts
trivially on K(Fy(0)) is generated by O* and g, L(Uy). We write [1,0; =
90 1(Uy). The sequence
O* — g5 (U1)/ 95" (Un) — Gal(K (Fn(8)/K(j(6))) — 1
is exact and gy induces a well-defined injection between the quotient groups
95 ' (U1)/95" (Un) = GL2(Z/N1Z).
We use the isomorphism ga_l(Ul)/ga_l(UN) ~ (O/NO)* to define the map
go.n : (O/NO)* = GLo(Z/NZ)
which is the reduction of g9 modulo N. One obtains the diagram
o* — (O/NO)* — Gal(K(Fn(9))/K((6) — 1
96,N
{1} — GLy(Z/NZ) — Gal(Fn/Fy) — 1.
Define Wy g to be the image
Wi = 9o,n[(O/NO)*] C GL2(Z/NZ).

If # has minimum polynomial f(& = X%+ BX + C € Z[X] we can list the
elements of Wy ¢ explicitly as a finite set

(6) W = { (+-B5 =Cs) € GLy(Z/NZ) | t,s € Z/NZ}.

Corollary 4. Let O = Z[60] be the ring of integers of an imaginary number
field K of discriminant d < —4. Let h € Fy and suppose Q(j) C Q(h).
Then

h(0) is a class invariant <& Wy ¢ acts trivially on h.

Proof. The image of Stabgyp) in GL2(Z/NZ) obtained by reducing coeffients
modulo N is given by

Stabp v = {@ € GL2(Z/NZ) | h* = h}.
By Corollary 3, the inverse image of Gal(K (Fn(8))/K (h(6))) with respect
to the Artin map on (O/NQO)* is go_}v(Stabh,N). As gg n is injective, the

equality g, v (Stabp x) = (O/NO)* holds if and only if Wy 4 is contained
in Stabp n- O
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4. WEBER'S MODULAR FUNCTIONS

Weber constructs several functions which provide good candidates for pro-
ducing class invariants for a large number of discriminants. These are mod-
ular functions h for which Q(h) is an extension of Q(j) having small degree.

We call f an automorphic form of weight k if it is meromorphic on H*
and satisfies the relation

foa(z) = (cz+d)*f(z) foralla= (2%) € SLy(Z).

The normalized Eisenstein series

1
92(z) = 60 > m 1 n2)t
(m,n)€Z2\{(0,0)}
1
g3(2) = 140 > — =
ez oy ™)

are automorphic functions of weights 4 and 6, respectively. The Dedekind-n
function

00
(7) n(z) — q1/24 H(l _ qn) ,  with ¢ = 27z
n=1

is holomorphic and non-zero for z € H. For the generating matrices S,T €
SL2(Z) given by
§=(17) and T=(}§})€SL(2)
the transformation rules
(8) noS (s)=vV=izn(z) and noT (2) = Caun(2)

hold. Here, the branch of the square root on the half plane {z € C | Re(z) >
0} is chosen to be positive on the real axis. The A-function defined by

A(z) = n*(2)

is automorphic of weight 12 and without poles or zeros on H.

Let MH(Z) denote the set of 2 x 2 matrices with integer coefficients and
positive determinant. These matrices act as fractional linear transforma-
tions on the complex upper half plane. The next lemma provides a method
for making I' y-invariant functions.

Lemma 5. Let f and g be automorphic functions of the same weight, and
let @ € M} (Z) be an integral matriz such that det(a) = N. Then the
function

is I' y-invariant.
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Reference. [2; 11, §2 Theorem 3]. a

Applying lemma 5 in the case a = (}9), we can recover the well-known
fact that the j-invariant

3 2
. — 123 92(2) — 123 6 g3(Z)
8 =12 emeam = anean)
is invariant under T’y = SLy(Z). As A = n?* is a 24th power, the above

expressions for j show that one can extract holomorphic roots /7 and
Vv j — 123. The resulting Weber functions

_ 12g5(2)
202 = GG
_ 6%g3(2)
(2 = Geniec)

are no longer SLy(Z)-invariant. Under S and T they transform as

(9) Y208 =" 72°T=<3_1'Y2
308 =-73 Yol =-v

from which one deduces that o is ['s-invariant and that 3 is I's-invariant.
The function values of 2 and 3 are only moderately smaller than the
j-function. Better results can be obtained by applying lemma 5 to quotients
of A. One can then extract holomorphic roots of higher power.
The functions

Ao(3)) Aol _uAo(3))
A7 A7 A
are of level 2 and have rational Fourier coefficients. They are the distinct

roots of (X —16)% —jX. As we have A = n?*, we can extract holomorphic
24th roots to obtain the Weber-f functions

_ —1'77(5322)
f(z) —C48 n(z)
N n(3)
_ 5. M(22)
fo(z) = V2 )

These Weber functions have considerably smaller values than j, but they
also have higher level and generate extensions of higher degree over Q(j).
It follows from the product expansion (7) for n(z) that each of the functions
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f, f1, and v/2- fo have rational Fourier expansions. From the transformation
rules (8) for n(z) we obtain

(f, fla f2)°S = (f: f?) fl)
(F, f1, f2) o T = (Cg'h, Gahr Caha)-

One deduces that f, f; and fo are contained in Fyg. Taking suitable powers of
Weber’s functions, one obtains various modular functions of level dividing
48. For example, the functions

_ (48 (- 1)
- 5
4 —16 f3*+16 13+ 16
fe it i
are contained in Q(f8, 12, 18). Thus we note that both -3 and vy, have Fourier
coefficients in Q, and in particular we have 3 € F, and 5 € F3.

(11)

(12)

Yo =

Let K be an imaginary quadratic number field and suppose h € F. The class
invariants h(f) € R which arise from real function values are particularly
convenient because their minimum polynomials satisfy

9 = 13? e Qix].

Namely, when we embed the algebraic closure Q in C, the generator of
Gal(K/Q) is obtained by restricting complex conjugation to K. Thus if
o € Aut(C) denotes complex conjugation and h(f) = o(h(f)) is real, then
the polynomial

1 = £ = (150
is invariant under Gal(K /Q)

The product expansion (7) and the expressions (10) and (12) imply that
the functions f, f1, f2, v3 and 2 all take on real values along the imaginary
axis in H. As v, has Fourier expansion in (@((qli)), we also note when z € H
has real part R(z) € % Z, then the function value y2(z) is real.

It is difficult to produce modular functions of small degree over Q(j) when
the level N is not divisible by 2 or 3. The reason for this is group theoretical.
For p > 5 the group

Gal(C: F, /C(j)) = SLa(Z/pZ)/{£1}.

is simple. Weber shows that any subgroup of SLa(Z/pZ)/{+1} has index
at least p, and that a subgroup of index exactly p can only occur in the
cases p = 5,7,11.

For the smallest example p = 5, Weber constructs modular functions
w; € F5 with 4 = 0,...,4 such that Q(j) C Q(w;) is an extension of degree
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5. These are known as Weber’s resolvents of level and degree 5. For i =
0,...,4, let ¢; be an integer such that

¢i =0 (mod 12) and ¢ =i (mod 5).
Define the functions

= (45w st (52

Then the functions

wi(z) = :}—5 (Voo — vi)(Vig1 — vi—1)(vi—g — vi42)(2), ©=0,...,4

are in F5. They are the five distinct roots of (X +3)3(X?+11X +64)—j €
FX].

The action of (§9) € Gs induced by o4 : (5 — (¢ on the Fourier coeffi-
cients of w; is given by

(wo, w1, wa, w3, ws)% = (wo, Wq, Wad, W3d, Wad)-

Observe that the function wy is Gs-invariant and thus has Fourier expansion

in Q((qlg)) In particular, if z € H satisfies R(z) € % Z, then the function

value wy(z) is real. From (8), one derives the action of the generators S and
T for SLy(Z)

(13) (wo,w1,w2,w3,wq) 0§ = (wo,ws,wr,ws,ws)
(wOawl7w27w3aw4)oT = (w1,UJ2,CL)3,W4,w0).

Reference. [7; §34, §54 and §83].

5. COMPUTATION OF Wy g AND ITS ACTION ON Fiy

In this section we collect a few remarks of a practical nature with regard to
computing Wy ¢ and the explicit action of Wy g on Fy.

It is well known that every matrix () € SLy(Z) can be written as
an element of (S,T). For u € M) (Z) let uy € M>(Z/NZ) denote the
matrix obtained by reducing coeflicients modulo N. If in particular, N =
p" is a prime power, we have the following formula for writing (‘; S) N €
SLo(Z/NZ) as an element of < Sy, Ty >.

Lemma 6. Let N = p” be a prime power and let (¢ Z)N € SLo(Z/NZ), so
that either a or c is invertible modulo N. If (¢, N) =1 lety = (1 +a)-c™*
mod N. Otherwise, if (a,N) =1let z= (c+1)-a™' mod N. Then (¢ S)N
has the decomposition

a b) _[@ySTeSTH )y if (e, N) =1
(c d) = (ST*ST-*ST" )y if (a,N) = L.
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Proof. If (¢, N) = 1 note that

T-yab _ (1 b—yd
N \e d/y c d Jun

Left multiplication by appropriate powers of Sy and Tn quickly produces
a triangular matrix, which is some power of Tyy. In the other case of

(a, N) = 1, the same argument applies to S- (‘g g) = ("ac ‘b‘i). [

The factorization formula in Lemma 6 makes it convenient to calculate the
action of Wy g on some function h € Fy in the case that IV is a prime
power. If N and M are relative prime integers then for h € Fypr we will
use the Chinese remainder theorem to we lift the action of Wy g to Fnpy
so that Wiy g x W9 =~ War,e as groups of automorphisms of Fyas.

In sections 8, 9 and 10 we need to determine whether the entire matrix
group Wy g acts trivially on some given function A € Fy. One could ignore
the group structure completely and calculate the action of every element of
Wi ¢ given by the list (6). However, it is often less cumbersome to first find
generators for Wy g.

For O = Z[6], the groups Wy g =~ (O/NQO)* are isomorphic. Suppose 6
and 7 are imaginary quadratic algebraic integers. Then the description (6)
of WN’g shows

16 = fomod N = Wy g = Wn,, C GL2(Z/N1Z).

Even if the coefficients of f& and fg are not congruent modulo N we can
often use the following lemma to determine generators for Wy, from given
generators for Wy g.

Lemma 7. Suppose u € M (Z) such that uy € GL2(Z/NZ). If both 6 and
u(0) are imaginary quadratic algebraic integers then Wiy g 1s the conjugate

group
Wi uo) = un: Wi g-uy'.

Proof. Regarding gy as a function on Hp O, observe that
u- go(x)-u = gy(e)(x)
for any z € [], 0. O
Example 8. Take N = 16 and suppose m € Z and
fE=X2+X+m and fo=X*+X+(m+38)
The congruence
f&T8 = X? + 17X + (m + 72) = f§ mod 16

gives
8 -8
Wisr = Wico+s =T Wig gl .
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Example 9. Again, take N = 16 and now suppose m € Z 1is odd with
fo=X*+m and fG=X>+(m+8).
The congruence
f8 =X+ 9m = f§ mod 16

gives

Wier = Wiezs = (39) - Wige (1 9).

6. CLASS INVARIANTS FOR 73 AND 7

We illustrate our technique by recovering some classical results due to We-
ber.

Theorem 10. Let K be an tmaginary quadratic number field of discrimi-
nant d, with d < —4. Let § = ——B%‘/—a generate the ring of integers O of K.
We have

2td = v3(0) is a class invariant
B . . . . ($72(0)
3td = (372(0) is a class invariant with f}’ € QX].

If 2 divides d, then ~y3(0) generates the ray class field of conductor 2 over
K. If 3 divides d, then v2(6) generates the ray class field of conductor 3
over K.

Proof. Consider the assertion for 73. If 2 splits in O then (O/20)* is
trivial. If 2 is inert in O then (0/20)* ~ Z/3Z. 1t follows that the length
of the W, g-orbit of 3 divides 3. Because v2 = j — 12% we know [K (y3(6)) :
K (3(8))] < 2 and conclude that y3(0) is a class invariant.

If d is divisible by 2 then Wy ~ Z/2Z. If f§ = X?> + BX + C is the
minimum polynomial for & then W5 g is generated by

{(9}))2:52 if C'=1mod?2,
10
11

Both of these matrices act on Q(v3) as y3 — —73. As
Gal(K (F>(0))/K(§(0))) = Wape/{£1}

is a group of order 2, we have K(vy3(6)) = K(F2(0)). In other words, v3(6)
generates the ray class field of conductor 2.

Consider the assertion for 2. In the case B = 0 mod 3 we find the genera-
tors for W3 g given in the table below.
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|dmod3 | Structure | W30 |
1 [2/22xZ/2Z]{(3§),,(5%)3)
2 Z[8Z ((11)a)
0 Z[6Z ((39)3)

Using the factorization formula from Lemma 6 and the transformation
rules (9), we calculate the action of each of these generators on (3 and ~s.
In the following table, the second column indicates the discriminants d for
which a matrix in the first column occurs as a generator for W3 g.

| Generator [dmod3 | (3 72 |

(39) 1 GG 7
(10) 1 Cg Y2
(1) 2 G 7
(%8) 0 3 C§72

Observe that if d is not divisible by 3 then v2(f) is a class invariant. We

have f}y{z(o) € Q[X] because the function value y2() is real.

In the case that 3 divides d, we see that W3¢ does not fix (3"y2(0) for
any integer m € Z. The group W3/{£1} has order 3 so we conclude that
v2(0) generates the ray class field K(F3(0)) of conductor 3 over K. Thus
the statement of the theorem holds in the case B = 0 mod 3.

In the general case, if § = :%*—‘@—, then T-5(6) = %—M generates O.
The transformation rules (8) for -y imply

(Byy =4p0T 8.

In particular, (Z+v5(6) = 72(6 — B) is a class invariant if and only if 3 does
not divide d, and the proposition holds for all integers B € Z. O

7. CLASS INVARIANTS FOR THE RESOLVENTS wg AND w3 OF LEVEL 5

If 5 is inert or if 5 is ramified in O = Z[6] then W5y fails to stabilize any
of the resolvents w;, : = 0,...,r of level and degree 5. In the split case we
have the following:

Proposition 11. Let K be an imaginary quadratic number field of discrim-
inant d = 1 mod 5 with d < —4. Let O = Z[0)] be the ring of integers of
K wrth

4

o_ |4 #d=0modd
“—1%;—@ if d =1 mod 4.
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The following statements hold:

d =1 mod 4 = w3(0) is a class invariant with f,“?(a) € QX]

d =0 mod 4 = w;(0) is a class invariant with f;‘é“(a) € QX].

Proof. If d = £1 mod 5, then W ¢ has structure (0/50)* ~ Z/4Z x Z[4Z.
Let

fo=X>+BX +C e Z[X]

be the minimum polynomial for §. We find generators for W5y as the
coefficients (B, C) range over the possible values. We then determine the
action of these matrices on Q(wp,w;,ws,ws,ws). The second column (B, C)
in the table below indicates the € for which a matrix in the first column
appears as a generator for Ws4. The image of w;, for i = 0,...,4 with
respect to the action of these matrices is given in the remaining columns.

| Generator | (B,C) mod 5 Jwo wi wp ws wy|
(%(2)) (071)7(0’4)7(170)a(1a3) Wy W1 w2 W3 W4
(% lli) (0, 1) Wop W3 w4 w2 Wi
(%) (1,0) Wy Wy w4 w3 wi
(i%) (0,4) Wy W4 W) wy w3
€5 (1,3) Ww; Wy w4 w3 wWo

Observe that wy is invariant under Ws g in the case that d = 0 mod 4, and
that w3 is W5 p-invariant in the case that d = 1 mod 4.

The function wp takes on real values at z € H with R(z) € % Z and the
transformation rules (13) give

w3 = w00T3.

In particular, if d = 0 mod 4 we have wp(f) € R. In the case d = 1 mod 4
we have w3(f) =wp(6 +3) € R O

8. CLASS INVARIANTS FOR THE WEBER-f FUNCTIONS

We now determine class invariants for powers of the Weber-f functions by
computing the explicit action of Wygg ~ W39 X Wigg on Q((ss,f,f1,f2)
as the coefficients of the minimum polynomial f& € Z[X] range through
Z./487. In doing so we recover several results from [1], [4], and [7].

We lift the action of GL2(Z/3Z) to F4g by the Chinese remainder the-
orem. First we need to embed the generators S3,T3 € SLy(Z/3Z) in
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SLy(Z/48Z) as

33 32 _ (2a3p—16 rld
Sgi-—) (16 33)48 = (TST ST )48

1 16 _ 16
T3 — (0 1)48 - (T )48‘

Define the action of S3 and T3 on functions h € Fyg as

heS; = hoT2S3T-165T14
heT; = hoTlS.

For ((1) 2)3 € G3, let o4 be the action on Fyg obtained by lifting the auto-
morphism of Q((48) determined by (3 — C:‘f and (16 — (16. We define

he ((1) 2)3 = hg.
The explicit action of GLa(Z/3Z) on Q((4s,f, f1,f2) is given by

(C37§16af, f1, f?).S-?) = (43’<1ﬁafa f1, f?)
(14) (C3,C165f5 f1y f2) @ T3 = (3,C16,C3Fs C3T1, C3F2)
(C37<167f7 f1, fZ). ((1)2)3 = (Céi')ClGaf’ f1, f2)

Proposition 12. Let § = _—E'{—l—a generate the imaginary quadratic order
of fundamental discriminant d < —4. The group GL2(Z/3Z) acts trivially
on Q(3,13,13). Furthermore we have

31d == Wsy acts trivially on Q((P1, (P, (Ffa).

Proof. By the transformation rules (14) every matrix in GLy(Z/3Z) acts
trivially on Q(f3, f3, 3).

Suppose that 3 divides B. We use the generators of W34 found in sec-
tion 8 to compute the action of W3 g on Q({4s, f, f1,f2). The second column
in the table below indicates the discriminants d for which a matrix in the
first column appears as a generator for Wiyg . The images of (3, f, f1, and
fo respectively are displayed in the remaining columns.

| Generator | d mod 3 [(3 f1 fo |
(55) 1 G f  f1i fo
(7o) 1 5 F B f
(17) 2 |G § o oh
(12) 0 |G G Gh G

From the table it is clear that if 3 does not divide d then W3 g acts trivially
on Q(f, f1,f2)- Therefore the statement of the proposition holds in the case
that B is divisible by 3.
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In the general case, if § = _—B—2+—ﬁ then the translate 7168 (9) = ______—33B2+\/3
is again a generator of @. The transformation rules (14) give

(€55, G, (5 F2) = (., f2) @ T P
and we note
Wi o-168 = Ty PW; oT.
Since
W3 9_16B acts trivially on h <> W3 g acts trivially on h e T3_B
holds for any function h € Fyg, the proposition holds for all integers B € Z.
O

We lift the action of GL9(Z/16Z) to Fsg. First we embed Sig,Tis €
SL2(Z/16Z) in SL9(Z/48Z) according to the Chinese remainder theorem

33 16
1 33

and define the action of Sig and Tijg on h € Fyg as

heSig = ho S3Tr-28T168T14
heTy = hoT3.

For ((1, 3)16 € G14 define

S16 — <16 15) = (S3T_2ST165T14)48
48

h'((l)g)m = h%

where o4 is the action on Fyg obtained by lifting the automorphism of

Q({4s) determined by as (3 — (3 and (16 — (. The GLy(Z/16Z)-action

on Q(C‘lSvfa fla f?) is given by
(¢3,C16, 5 f1, f2) ® S16
(¢3,C16, 5 f1, f2) @ T16

(C37C16af7 fla fZ) i ((1) 2)16

(¢3,C16,f» f2, f1)
(C3,C16, Ci6F1, C6fy CSh2)

(C3a Cii67 f7 fl) gif/@f?)-

In the remainder of this section we calculate the action of Wi on

Q(C4s, T, 1,f2) as the discriminant of O = Z[6] ranges through the funda-
mental imaginary quadratic discriminants d. The cases where 2 is split,
inert, or ramified in Z[#] will be dealt with separately. In each instance our
goal is to find Wigg-invariant functions in Q((ss,f,f1,f2) which fulfil the
additional condition Q(j) C Q(h).

We begin with the split case.
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Proposition 13. Let O be an imaginary quadratic order of fundamental
discriminant d < —4 and let 6 = “—13{,—!—2. We have

d = 1 mod 8 = Wig g acts trivially on (1'65f2.

Proof. If d = 1 mod 8 then Wigy has structure (O/160)* ~ (Z/4Z x
Z/ 27)2. It turns out that the matrix group Wie,¢ is determined by the
coeflicients of f& modulo 8.

We calculate the action of generators for Wi g as 1}4 ranges over Z/8Z.
The second column indicates the discriminants d for which a matrix in the
first column appears as a generator for Wig g.

| Generator l % mod 8 | Cie f f1 fa l

(% 3) 0246 |Ce | f1 f2

(53) 0,2,4,6 6 f Cefi Cigfo
&l 0,4 16 Cigl 11:szf2
(49) 26 |G Gl Cleh Cigh
(29 0 16 Clef Cfgsfl (Tef2
(53%) 4 16 Claf Gigh Clgh
(83) 2 o Cof R Clefo
(6 %) 6 16 Cief Cief1 Cieh

Observe that each the automorphisms in the above table fixes C1_65f2. O

We continue with the inert case.

In the case that O is an imaginary quadratic order of discriminant d =
5 mod 8, we have group structure (0/160)* ~ Z /87 x Z[4Z x Z[6Z. The
matrix group Wie ¢ does not fix any of the functions 24, f%“, or §34.

One can of course determine functions h € Q({ss, f,f1,f2) which are in-
variant under Wig ¢ but which might not satsify the extra condition Qy) c
Q(h). One could then use Lemma 18 of Section 11 to determine whether
the function value h(f) nonetheless generates the Hilbert class field over K.
We will not do this in this paper.

For d = 5 mod 8, we choose the generator 8 = _1—*2"/—2 C 0. The following
table provides the action of the generators for Wig g on Q(Css, f, f1, f2).
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LGenerator l I%d mod 16 ] Ci6 f f1 f2 I

(5 %) 159,13 |G Gl Cigh  Cieh
(143 All) 3,7,11,15 Cllg f Cfﬁh Cil(if?
(21 1,9 6 Clef Clsh  Cishe
(2 10) 3,11 16 Cisf Ciefi Clok
(3% 9,13 Gl | Clehi Clefo
(1) 7,15 16 Cisf Clef Clgfe
(50) 1 Ci6 Cigle  Cigl Cigh
(5:0) 3 Cis Clsf2  Clef  Clsh
(313) 5 Ci6 Clsfe  Cisf  Chhi
(i13) 7 Ci6 Cefe  Ciaf Cl6h
(53) 9 Ci6 Ciefz  Clsf (el
By 11 Ci6 (iefe  Clef  Cleh
(¥3) 13 Ci6 Cief2  Csf  Cigh
(1) 15 Ce Cisfz Cigf R

We now consider the case when 2 ramifies in O = Z[6)].

Proposition 14. Let O be an imaginary quadratic order of fundamental
discriminant d = —4m < —4 with generator 6 = /—m. The following
functions are Wyg g-invariant.

[ m mod 8 | Wig ¢-Invariant |

S| TY DN =
R

Proof. When d is even, (0/160)* is a group of order 27. The group struc-
tures for Wyg ¢ which arise are

ZJ16Z X Z/AZ x Z/2Z if m = 0 mod 2
Wieo ~ < Z/8Z x Z/AZ x Z[4Z  if m =1 mod 8
Z/8Z X Z[8Z x ZJ/2Z if m =5 mod 8

We first determine generators for Wye g in the case that m is even and then
compute the action on of these generators on Q((us,f,f1,f2). The second
column of the table indicates the m for which a matrix occurs as a generator
for Wieg.
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| Generator | mmod 16 [ (16§ f1 f2_|

(v %) 1261014 | (e § f1 f2
( (3; g ) 276’10714 (?6 f Cis(jfl <¥6f2
(1) 2 (s Clefe Cleht  Chef
( :1; 114 ) 6 C176 C%& fo Cfefl C}sdf
(31) 10 [¢l5 Gk Cish  Cief
(%) 14 Ge Ggle F (gt

We see that all of the matrices listed in the table above act trivially on
f4. It’s easy to verify that we can do a little better and provide a Wig g-
invariant function by using some suitable element of Q({1¢) to normalize 3.
Since f; takes on real values along the imaginary axis of the complex upper
half plane, we choose the normalizations

2 if m = 6 mod 8
V22 ifm=2mod8.
These are both Wi g-invariant and real-valued at 6.

We now perform a similar calculation when m is odd.

| Generator [mmod 16 | {15 § f1 fo |
(%) 9,13 Cie | f1 f2
33) 1,9 (i f (Tf1 Cref2
(%) 1 (e Clst Clef2 Cish
(1) 1 Gie | fo f1
(13) 9 s Claf Clefe Cieh
(14) 9 Ge 1 f2 R
(i) 5 (T Clef Clsfe Cieh
((1) 1()1 ) 9 4156 f (§6f2 fl
(13) 13 [Cie Clef Clef2 Gleh
(18) 13 B F 6k h

Here we see that each of the automorphisms in the above table stabilizes f*.
In the case of m = 1 mod 8 we can actually do a little better by normalizing
{2 using some suitable element of Q(¢1g). The function V2§ is Wis,6-
invariant and real-valued at 6. a

Theorem 15. Let K be an imaginary quadratic number field of discrimi-
nant d < —4 and let § = :L;—‘/a. Ifd = 1 mod 8 then we have

3td = (4§2(0) is a class invariant
3|d = (i6f3(0) is a class invariant

In either case, the given class invariant is also invariant under Gal(K/Q).
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Proof. Apply Propositions 12 and 13 to C3C1—55f2 = (48f2. Note from defini-
tions (7) and (10) that if 2 € H with R(z) = —3, then we have (4sf2(2) € R.
a

Theorem 16 (2 ramified). Let K be an imaginary quadratic number field
of discriminant d = —4m < —4 and let 0 = \/—m. The following is a table
of class invariants.

[mmod8|[d#0mod3|d=0mod3 |
1 V2-£(0) | v2-§5()
2 V2-706) | vV2-£(9)
5 0) 0)
6 i1(6) i1(6)

The modular function values given above are also invariant under Gal(K/Q).

Proof. Apply Proposition 12 and 14. O

9. SHIMURA’S RECIPROCITY LAW

In this section we discuss a modification of the exact sequence (1)

1 — Z* — GLy(Z) — Gal(F/F,) — 1,

so that one can describe all of Aut(F) instead of only Gal(F/F;). This
allows the Shimura reciprocity law to be stated in its full generality, which
we will need in Section 11.

Let AfQ = H;Q,, denote the ring of finite rational adéles. Here, the

restricted product is taken with respect to Z, C Q,. We write GLg(AfQ) =
H; GL2(Q,), where the restricted product is taken with respect to GL2(Zp)

C GL2(Qp). We consider GLy(Z) C GL2(A(€I) to be a subgroup by means
of the embedding

GLy(Z) = [ GL2(Z,) < [ GL2(Qy) = GLa(4h).
p P

Let GL(Q) denote the group of rational 2 x 2 matrices with positive de-
terminant. Embedding Q along the diagonal of AfQ we view GL3 (Q) C
GLZ(A?Q) to be a subgroup. In particular, we identify Q* with the scalar
matrices Q* C GL3(Q) C GLQ(A({I).

One can show that every z € GLg(AfQ) can be written as

¢ = u-a with u € GLy(Z) and a € GLS (Q).

This decomposition is not unique since SLy(Z) = GLy(Z) NGLJ (Q). None-
theless, the decomposition z = u- « determines a group action of GLQ(AfQ)
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on F given by h® = h* o . Here, u € GLy(Z) acts via (1) and a € GLI (Q)
acts as a transformation on the complex upper half plane.

Theorem 17 (Shimura exact sequence). The sequence

(15) 1 — Q" — GLy(Af) — Aut(F) — 1
15 ezact.
Reference. [5; Theorem 6.23]. O

Recall the from (5) the embedding
!
g0 : Jie — J] GL2(Qy)

P
and consider the diagram

["’VK]
1 — K* — JE — Gal(K**/K) — 1

9e
1 — Q@ — GLy4h)) —  Aut(F) — 1.
Theorem 18 (Shimura reciprocity law). Let Z[8] be the ring of integers of

an imaginary quadratic number field K with 0 in the complex upper half
plane. For h€ F and z € Jf{ we have

h(9)l=™ K] = plos (@) (g),

IfG c GLQ(AfQ) 15 an open subgroup with fized field FF C F, then the
subgroup of J& that acts trivially on K(F(8)) with respect to the Artin map
is generated by K* and g;l(G).

Reference. [5; Theorem 6.31, Proposition 6.33]. O

10. ACTION OF THE CLASS GROUP ON CLASS INVARIANTS

Let K be the imaginary quadratic number field of discriminant d with ring
of integers O = Z[0)]. For an ideal a C O the formula

a:j(0) = j(a™h).

gives the action of the Artin symbol for a on the class group Cl(O).

Every primitive reduced quadratic form of discriminant d corresponds
uniquely with an ideal class in Cl(O). If [a,b,c] is a primitive form of
discriminant d then for 7 = :%%1_3, the Z-lattice L = [a,a7] is an integral
O-ideal. The Galois action of the Artin symbol for [a, —b,c] on K(5(6))/K
is given by

i@ = j(r).
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Suppose h € F is a modular function for which h(f) € K(5(6)). In this
section we give a formula

u: ClO) — GLy(Z)
[a,b,c] +— Uy
such that
R(9)l=0d = pUr (7).

We begin by producing an idéle z, € J%, such that the Galois action of the
Artin symbol [z, K] satisfies

§(O) = j(§)lm K.

If p € Z is prime, let L, = L ®z Z, so that L, C O,. We need to produce
a finite idele (z,), € [, Kp such that

H z2pOp = HLP
P 2

holds. It turns out that one can always choose z, to be among {a, a7, aT—a}.

Lemma 19. Let K be the imaginary quadratic number field of discriminant
d with ring of integers O = Z[0]. If [a,b,c| is a primitive quadratic form

of discriminant d let T = —‘—bzia‘@ and L = [a,a7]. For every prime p € Z
define zp € L as

a ifpta
Zpi=Qar ifplanpic
a(t=1) ifplanp]|c.
For z; = (zp)p € Ji the Galois action of the Artin symbol [z, K] satisfies
5O = ()

Proof. The inclusion 2,0, C L, follows from z, € L. Note that L C O has
index [O : L] = a. For every p € Z we compute

a? ifpta

Ng/g(zp) = { ac ifplaAptc
a(a+b+c) ifplanp|e,
and since (a,b,c) = 1, one obtains || Ng/q(2p) |l = llallp. From
[Op : 2p0p] = llallp = [Op : Ly
we conclude 2,0, = L. O
Given an imaginary quadratic discriminant d, fix
=LVd i = 1 mod 4
0 =
Yd if d=0mod 4,
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and given [a, b, ], let z = 2, be as stated in Lemma 19. For a class invariant
h(@), the Shimura reciprocity law states

h(6)[®—be = p(g)le™ K] = poe(2) (g).
Let M € GL3 (Q) satisfy M- (f) = (%7). Explicitly, one computes

[y
|,_..
<o

—
SN T PN

) if d=1mod4

o

) if d = 0 mod 4.

The action of GLQ(A&) via (15) gives
h9e(2)(9) = p9e(2) M~ (1),

Define u, = gp(2)-M~! € H;, GL2(Qp). Let u, € GL2(Q,) denote the
component of u, at p. Then the determinant of

Up = (ge)p(zp)‘M—l € GL2(Qy)
is given by
| R
det(up) = NK/Q(‘ZP)' E € Zp'

Writing out u, for d = 0 mod 4, one obtains

( a Q
0 i) ifpta
b,
(16) Up = 4 12 0 ifplaAptc
b _ 4 —b_
| 21 a 2_1 c) ifplanp]c.
On the other hand for d = 1 mod 4, we get
( b—1
a 5 .
fpfa
0 1) if pt
17 = ifplaAptc
(17) =l 1 planpt
—b—1 1-b
2 T8 ¢ if A
\ ) 1 ) ifplanp]c.

We observe that in either case, u, € GL2(Z,) and we conclude u, € GLQ(Z).
We have demonstrated the following statement:
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Lemma 20. Let Z[0] be the ring of integers of an imaginary quadratic num-
ber field K of discriminant d and let [a,b,c| be a primitive quadratic form
of discriminant d. Define

Vi if d = 0 mod 4
0— _ \/— .
1+ if d =1 mod 4

and T = :b—;‘a—‘@. Let u; = (up)p be defined according to the local formulas
for up € GL2(Zp) given in (16) if d is even or (17) if d is odd. It follows
that

h(9)1 > = hr(7)
for any h € F such that h(0) € K(5(6)). O

11. FORMULAS OF MORAIN AND ZAGIER

We can use Theorem 20 to verify some conjectural formulas of Morain and
Zagier regarding conjugates of class invariants arising from some classical
functions. The following proposition is Morain’s Conjecture 1 from [3].

Proposition 21. Let d = 1 mod 4 be an imaginary quadratic discriminant

and let 6 = —“1—;‘@. The action of the class group on ~y3(0) is given by the
formula
a,— bi Qa
A TP6) = (1) ety ()

where [a, b, c] is a primtive quadratic form of discriminant d and T = igfa—‘/—a.

Proof. By Theorem 20, the matrix M € GLy(Z/2Z) given by
4 1 b1
2 if2ta

0
=b—-1 1)
mM={|"T if2]an2te
1 0
—b—1 1-b

"{) if2]an2]|c.

satisfies
a,—b,
B 9(0) = 247 ().
We decompose M in terms of S and T' modulo 2

b=1

T= if2ta
M=_{T%STST if2|an2fc
T3 STS if2]an?2]ec.
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Using (9), we calculate
(- 1)”T (r) it2ta
»1(0) =< (- 1)3 (7) if2]an2tc
(—1) Flys(r) if2|an2]c.

A routine check shows that in each case, the above formulas are equivalent
to the formulia given by the proposition. O

3
’)’

We prove Zagier and Yui’s conjectural formula (27) regarding the conjugates
of the class invariant (43f2(6) from [8].

Proposition 22. Suppose d = 1 mod 8 is an imaginary quadratic discrim-
inant such that d Z0mod 3. We let § = %‘Q. Let [a,b,c]| be a primitive

quadratic form of discriminant d and let T = _I’TJ;‘/E—. The action of the
class group on (48f2(0) is given by the formula

Cb(a C+a C) ( ) lf2+au
(18) (Casfa(8)) ™" = ba—e- ) (1) if2|an2fc

()T GE ) i2lan2]e.
Proof. Theorem 20 gives a matrix M € GLo(Z/48Z) that satisfies

Cagfa(0)[®59 = (Cagfa) ™ (7).

The residue classes M3 € GL3(Z/3Z) and My¢ € GL2(Z/16Z) of M are
respectively

(19).8T-°ST-2ST%  if3}a
M; = (62).T(b—1)CSTCSTC if3|anl3tc
(39)-T1-bSTOST! if3|aA3]|c
and
(10).STT ST ST = if2fa
Mig = { (39)-TUF)eSTE ST® if2]an2fc

(3 08, ) - T atbte) gparime gTatbte=l £ 2| an2|c.
We write (43 = Cf65~ (3. Then
(Casf2)™ = ({16 (G3f2) @ M3) @ Mg

gives the action of M on on (4gf2. First we compute (3f2 ® M3 = usfs using
(14). Here, pg3 is the third root of unity
(¢ if3fa
ps =< ¢ if3lan3fc
1 if3|land|ec
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In a similar fashion, we find

pisf2 if2{a
(C1_65f2) o Mig =< pisf1 if24c
pief if2|an2]c,

where p16 € Q((16) is

o if 2ta
(19) pie = 4 (e if2]an2te
féa+b+c)(b+2a)—5 if 2 l al? | c.

The expressions (19) for ui6 have been simplified using the condition d =
1 mod 8. We conclude

p3 pie-fe if2{a
(20) (Casf2)™ = Qus- e f1 if2|an2fc
pa-pe f if2|an2]c.

We need to check that the formulas in (18) and (20) coincide in the case
3tdand d =1 mod 8. The condition d # 0 mod 3 implies

b=0 or acZ1mod3
(21)

=b(a — ¢+ a’c) = b(a — ¢ — ac?) mod 3
and we easily check

) @ if3fa
(hlamera’e) _ Lesbe i3 |andfec
1 if3|and]c.

Similarly, under the restriction d = 1 mod 8, one verifies that

Cl—GSb(a—c+a20) if 2 1, a
pie = { ¢ememee?) if2|an2tec
¢d1grtblemerac®) ip o g a2 ¢
holds. O
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