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One Special Class of Modular Forms and Group
Representations

par GALINA V. VOSKRESENSKAYA

RÉSUMÉ. On étudie une famille de formes modulaires qui sont
des produits de fonctions ~ de Dedekind. On s’intéresse aussi aux
liens entre ces fonctions et les représentations des groupes finis.

ABSTRACT. In this article we consider one special class of mod-
ular forms which are products of Dedekind ~-functions and the
relationships between these functions and representations of fi-
nite groups.

1. MODULAR FORMS WITH DIVISORS IN CUSPS

The study of relations between finite groups and modular forms is an

interesting topic of modern mathematical investigations. We shall study
from this point of view one special class of modular forms which is described
by the following theorem.

Theorem 1. There are only 28 functions determined by the following con-
ditions : these functions are 1) cusp functions of integral weight with chara-
cters ; 2) eigenforms of the Hecke algebra; 3) they have no zeroes outside of
the cusps. We can describe them completely by the following formula:

where Tl(z) is Dedekind’s q-function defined by the formula

where z belong to the upper complex half-plane.

Proof. All necessary definitions and notations of the theory of modular
forms can be found in Shimura’s book [10].



248

Let f (z) be a cusp form satisfying the conditions of the theorem 1 . We
shall denote by kf its weight and by N its level. Let III* be the complex
half-plane with the point of infinity. Let us consider the Riemann surfaces
ro(N) ) and where TX = {~ E ro(N) : = 1} . Our
functions belong to the space 

It is well-known that the cusp form which is an eigenform of Hecke algebra
has a zero with multiplicity 1 in every cusp of the group I Let us consider

the differential form w = f (z)(dz) 2 on the Riemann surface rx IFll*. The
degree of the divisor of this form is equal to

where g is the genus of the Riemann surface IHI* .

The differential form w in every elliptic point of the order 2 has a polar
with multiplicity 4 and in every elliptic point of the order 3 it has a polar
with multiplicity In every cusp form the form w has a polar with

multiplicity 2f - 1. Hence

where v2, v3 is the number of rx- nonequivalent elliptic points of the orders 2
and 3 correspondingly, vcxJ is the number of rx- nonequivalent cusps. Then

It follows from the theorem 1.40 of the book [10] that
. - . - .. - ..

where

We have

....-

Let x has the index n in the group ro(N) then /-i = npo, where

and can be calculated by the formula:
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Let us consider the covering

If s is a cusp of To (N) such that its prototypes under the mapping 0 are
regular cusps of rX then the full preimage of the point s consists of n points.
If s is a cusp of To(N) such that its prototypes under the mapping 0 are
irregular cusps of r then the full preimage of the point s consists of 11
points.

Let is the number of cusps of ro(N) such that its prototypes under
the mapping 0 are regular cusps of Tx and let ~’00 is the number of cusps
of To(N) such that its prototypes under the mapping 0 are irregular cusps
of rx . * The sum v~ + is equal to the number v~ of unequivalent cusps
of ro(N), which can be calculated by the formula:

where 0 - the Euler function. We have

In the left part we have the strict inequality because all cusps of rx
cannot be irregular if there are nonzero cusp forms of the weight k of rx.
In fact (-E) o rx and

where Foo is stabilizator of the point oo in SL2 (Z) . Hence oo is a regular
cusp of r x.

Let represent the ratio °- in the suitable for calculations form. It easy
v

to show that the function v (N) is multiplicative. Let p be a prime. Then

Let N = nm2, where n is a squarefree number.
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we have

At first we shall consider the case when all cusps of IPX are regular. In this
case we have 

I I, ,

We find all numbers 1~~ and N = nm2 satisfying this conditions. We have
the following result:

We shall use the following proposition from the article ~11~ for finding the
cusp forms with the known weights k f and levels N.

Proposition 1. Let us consider the product

where ak E I~, tk E Z with only finite tk =1= 0. Let the following conditions be
fulfilled:

1’B,-J.

Let N arr,d f be positive integers satisf ying
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~ is squarefree and the number C is a square of a rational

number,

Then

where

and x(d) are the character of square field

Then the function T/n(z) is holomorphic in every cusp of ro(N) and,
if in the condition 7 the sign &#x3E; will be changed to &#x3E;, then T/n (z) is a

cusp form.

Let us show that for N = 33,35,42,56,60,96 there are no cusp forms satis-
fying the conditions of the theorem 1. We shall find for every N, except
N = 42, the cusp form of the weight 2 which has in every cusp zero with
multiplicity 2. We also find the cusp form g42(z) of the weight 3 which
has in every cusp zero with multiplicity 3. Every such function is defi-
ned uniquely up to the multiplication on a constant because due to the
Riemann-Roch theorem two holomorphic functions with equal divisors differ
only on a constant.

These functions are:



252

Since N satisfies to the condition (1.1), then the function gN(z) has no
zeros on the upper half-plane. If there is a cusp form fN(z) of the level N
and of the weight 1 which has in every cusp a zero with multiplicity 1 and
no zeros on upper half-plane then gN = C 2 (Z) if 42 and g42 = cft2(Z).
If both functions are normalized then c = 1. The direct inspection of the
Fourier coefficients of the functions gN(z) when N 0 42 shows that it cannot
be a square of a cusp form. g42 is the cube of the cusp form of the level 63
and the weight 1. So we have no required forms in these cases.

For other values k j and N the spaces are one-dimensional as it

pointed out in the article [3]. Using the proposition we find the required
cusp forms. Since the corresponding spaces Sk (N, x) are one-dimentional
these cusp forms are eigenforms of Hecke algebra.

Further we shall consider the case when there are irregular cusps on r x.
By the definition of the irregular point its stabilizator is generated by the
element with Q E rx with the trace equal to (-2). If X is the trivial character
then Tx = To (N) and k f must be even. In this case our argument is like
previous. If x is nontrivial character then it must have nontrivial kernel. It
follows from the Dirichlet character’s properties that it is possible only if
41N.
We find the values k f and N = nm2 satisfying the conditions

We get

We shall find for every N, the cusp form gN(z) of the weight 2 which has
in every cusp of r x zero with multiplicity 2.

Since N satisfies to the condition (1.1), then the function gN(z) has no
zeros on the upper half-plane. If there is a cusp form fN(z) of the level
N and of the weight 1 which has in every cusp a zero with multiplicity 1
and no zeros on upper half-plane then 9N = If both functions are
nurmalized then c = 1. The direct inspection of the Fourier coefficients of
the functions g28 (z) and when g4$(z) shows that they cannot be squares of
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cusp forms. g40, 964, 972 are the squares of the cusp forms of the weights
1 and of the levels 80, 128, 144 correspondingly. So we have no required
forms in these cases.
The spaces S3 (8, Xi ) and S5 (4, x2 ) where X1 = ~ d ~ and X2 = ~ dl ~ cor-

respondingly are one dimensional [3]. We note that X, and X2 are the

unique nontrivial characters modulo 8 and 4 correspondingly such that
there are two numbers a and d in the kernel of the character such that
a + d = -2. Using the proposition we find f8(z) = r~2(8z)r~(4z)~(2z)r~2 (z),
f4(z) = 7~(4~)~ (2~)?~(~). Since the corresponding spaces Sk(N,X) are
one-dimentional these cusp forms are eigenforms of Hecke algebra. The
theorem 1 is proved.
Remark. If we omit the first condition the theorem 1 we can add to these
functions two cusp forms of half-integral weight: q(24z) and r~3(8z). The
Fourier coefficients of these 30 functions are multiplicative. In what follows
for brevity and convinience we shall call them multiplicative 77-products.
Dummit, Kisilevsky and MacKay have received the same list of cusp forms
from another point of view: they have shown that among functions of the
kind

where ak and tk E N, only these 30 functions have multiplicative coefficients.
They have checked it by the calculations on the computer [3].

2. REPRESENTATIONS OF FINITE GROUPS AND MODULAR FORMS

There are different ways of assigning modular forms to the elements of a
group. One of these mappings is as follows: let G be finite group, let g be
an element of G, let I&#x3E; be a unimodular representation of the group G in
the space V whose dimension is a multiple of 24, and let

be a characteristic polynomial of the operator Then we can assign
the function 

-

with each element g E G. The function is a cusp form of a certain
level N(g) and of the weight
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and its character is equal to the character of the quadratic field

Using the modular form r~9 (z), we can define, on an arbitrary finite group
G, a function an (g), for any n, so that the value of an is equal to the n-th
coefficient of the Fourier expansion of in the neighbourhood of the
point z = oo (q = 0) and, for any prime p, the function

where ord(g) is the order of the element g, k(g) and xg(p) are the weight
and the character ofqg(z),

For a modular form qg (z) that is an eigenform of all Hecke operators, the
functions and appear in the expansion of its Mellin transform
in the Euler product

It--I p

G. Mason considered a natural representation of the Mathieu group M24
on the Leech lattice [1,2]. He proved that for any element g E M24 the
function 77g(z) associated with this representation is an eigenform of all
Hecke operators. The functions an and ’ljJp(g) are virtual characters of the
group M24. It was noted that for p ~ 3 op (g) is an effective character.
The problem of determining the nature of the functions and 

for other groups appears naturally.

3. WEYL CHARACTERS OF LIE GROUPS AND THE CHARACTERS OF
MODULAR FORMS

We shall investigate the restriction of the adjoint representations of sim-
ple Lie groups whose Lie algebras are of even rank to finite subgroups in
which each element has a rational characteristic polynomial in the adjoint
representation. The characters an(g) are described in this case by MacDon-
ald’s formulas [8]. We shall try to elucidate the nature of the characters
’ljJp (g) in this situation.

Let us consider a simple Lie group Go whose Lie algebra Lie(Go) is of
even rank. Let g be a finite subgroup of this Lie group such that each
element 9 E G has in the adjoint representation a rational characteristic
polynomial
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with which the function

is associated.
For any prime p on the group G we define the function

where k(g) and are the weight and character of the form We
use

to denote the Weyl character of an irreducible representation of the Lie
group Go with leading weight (p - 1)0, where o is the half-sum of the
positive roots of the Lie algebra Lie(Go).

Theorem 2. For any element g E G and odd prime p that is relatively
prime to the order of the element g we have

where r is the rank of the Lie algebra Lie Go.

This theorem is proved in the article [11].
The Lie algebras of the type Al where 1 - 0, 4, 6, 10, 12, 16, 18, 22 mod 24,

of the type Bl where 1 - 0,16 (mod 24), of the type Cl where 1 - 0,16
(mod 24), of the type D, where 1 - 0, 8 (mod 24) have ranks which are
multipliers of 24. We can associate cusp forms with elements of cor-

responding Lie groups that have in adjoint representation the characteristic
polynomials with rational coefficients. The functions ’ljJp(g) in this case are
effective characters.

4. MULTIPLICATIVE q-PRODUCTS AND FINITE SUBGROUPS OF SL(5, C).

Multiplicative 1}-products can be associated with elements of finite sub-
groups in SL(5, C) by means of the adjoint representation. Let us consider
this correspondence in detail. It is an interesting problem to find finite
groups such that all modular forms associated with elements of these groups
by means of some representation are eigenforms of Hecke algebra.

G. Mason has shown that all functions associated with elements of the
Mathieu group M24 by means of the representation on the Leech Lattice
are multiplicative 1}- products. There are 21 functions of this kind. In the
following theorems we shall give other examples of such groups.
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Theorem 3. By means of the adjoint representations all multiplicative q-
products whose weight is more than 1 can be associated with finite order ele-
ments of the group SL(5, (C) . The eigenvalues of the elerreent g E SL(5, C)
that corresponds to a given cusp form can be found uniquely,up to a permu-
tation of the values, up to raising eigenvalues to a power coprime with the
order of the element g, and up to the multiplication of each eigenvalue by
the same fifth root of unity.

Proof. The adjoint representation Ad of the group SL(5, C) is a subrepre-
sentation of degree 24 of the representation

where

is the natural representation of SL(5, C) in 5-dimensional space V and lF*
is the conjugate representation to (D.

Let ,B 1, A2, A3, ~4, ~5 be the eigenvalues of the operator The ele-
ments

are the eigenvalues of the operator (lF © ~*)(g). Eliminating one eigenvalue
equal to 1 we obtain the set of eigenvalues of the operator Ad(g). Using this
method for each multiplicative q- product we find elements g E SL(5, C)
with which they may be associated.

Note that among the eigenvalues of the operator Ad(g) there are no less
than 4 units, so for its characteristic polynomial

we have 4. Thus the weight of the modular form associated

with g is greater than 1. The uniqueness is followed from the concrete
calculations.
The results are shown in the following table. We use (,to denote the

m-th root of 1. In the right column we write the cusps forms, while in the
left we write the eigenvalues of the corresponding element g E SL(5, (C).
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Theorem 4. The maximal finite subgroups o/9L(5,C) whose elements 9
have characteristic polynomials of the form 1)tk in adjoint rep-
resentation and the corresponding cusp forms = are of
the type described in the theorem 1, are the direct products of the group Z5
(which is generated by the scalar matrix) and one of the following groups:
84, A4 x 7G2, ~3? D4 x Z3, the binary tetrahedral group, the metacyclic
group of order 21, D6, the rraetacyclic group of order 12:  8, T : 83 =
T2 = (ST)2 &#x3E;, all groups of order 16, 7G3 x 7G3, 7G14, Zll, Z10, Zg.

Sketch of the Proof. This proof demands much place to be stated. It was

published in the Thesis of the author. We have used various facts of the
theory of groups and the theory of group representations. We present the
result in the following table where we point which multiplicative q-products
are associated with the elements of each group.
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5. MULTIPLICATIVE 1J-PRODUCTS AND REGULAR REPRESENTATIONS OF
GROUPS OF ORDER 24

Let us continue to study relationships between multiplicative q-products.
and representations of finite groups.

Theorem 5. Let G be any group of order ~4, be its regular represen-
tation, and let 

be the characteristic polynomial of the operator for an element g E G.
Then the function

is multiplicative q-product.

Proof. In the monograph [9] the generating elements and defining relations
are given for all non-abelian groups of order 24. Applying these data, we
can write out the conjugacy classes,the subgroups and the factorgroups
for the groups under consideration. Furthermore, by using the well-known
representations of abelian groups and of the groups Dn, 64 and Qs and by
applying the orthogonality relations for the characters of representations,
we can construct the tables of irreducible representations and find their
eigenvalues. Since the regular representation is a direct sum in which any
irreducible representation enters with multiplicity equal to its dimension,
it follows that these tables can be used to write out the eigenvalues of the
regular representations. The calculations are technical and too cumbersome,
and therefore we present only the result, namely, the lists of cusp forms that
correspond to the elements of the groups of order 24. It turns out that in
all these groups the same functions correspond to all elements of the same
order and among 30 multiplicative 1}-products, only eight of them appear
and two of them, namely, q(24z) and r~3(8z) have half-integer weights.

Thus, we have the following table:
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6. MULTIPLICATIVE 1]-PRODUCTS AND REPRESENTATIONS OF DIHEDRAL
GROUPS

Theorem 6. For the dihedral groups Dn, where 3  n  23, n 54 13, 17, 19
there is such exact representatz’on 4D that dg E Dn the has

such characteristic polynomial

that the function

n.-u

is multiplicative 77-product. For other dihedral groups there is no such rep-
resentation.

We note that all mudtiplicative 1]- products can be associated with elements
of dihedral groups (for different n).

This result has been published in [15].
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7. THE ARITHMETIC INTERPRETATION OF THE FOURIER COEFFICIENTS
OF MULTIPLICATIVE 77-PRODUCTS

At the end of the article we shall consider the arithmetic interpreta-
tion of the Fourier coefficients of multiplicative TI-products and their Mellin
transformation. From this point of view the multiplicative q- products of
the weight one have been studied by Japanese mathematicians M. Koike,
T. Kondo, T. Tasaka and others [4,5,6]. The multiplicative q-pro ducts of the
weight 2 have been studied by French mathematician Ligozat [7]. Dummit,
Kisilevsky and McKay have found for 16 of 28 multiplicative 1]-products of
the integer weight L- functions with grossen-characters of imaginary qua-
dratic fields which are equal to the Mellin transformations of this forms.
They have proved that for other 12 multiplicative q-products of the integer
weight this correspondence is impossible.

In the following theorem we present the analogous formulas where instead
of the ring of integers of an imaginary quadratic field we consider orders in
the algebra of quaternions and the Cayley algebra.

Theorem 7. Let IHI be the algebra of quaternions over Q and r4 is the

lattice of the Hurwitz quaternions :

Then

Furthermore

where the summation is taken over such quaternions a + bi + cj + dk, that
a+b-~-c-~-d - 1 (mod 2), 
Theorem 8. Let Ca be the Cayley algebra. Then we can construct in Ca
the order on which the bilinear form

defines the structure of the even unimodular lattice of the type Tg where the
root system E8 is closed under the multiplication in Cayley algebra.

Then the sum

over all elements of this order is equal to the cusp form q24 (z) -
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These theorems have been published in [16].
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