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A C*-dynamical system with Dedekind zeta
partition function and spontaneous symmetry

breaking

par PAULA B. COHEN

RÉSUMÉ. Dans cet article nous étendons une construction de

Bost-Connes, au cas d’un corps de nombres quelconque, d’un C*-
système dynamique à brisure spontanée de symétrie et fonction
de partition la fonction zeta de Riemann.

ABSTRACT. In this paper we extend to arbitrary number fields a
construction of Bost-Connes of a C* -dynamical sytem with spon-
taneous symmetry breaking and partition function the Riemann
zeta function.

1. INTRODUCTION

In [BC], J-B. Bost and A. Connes, motivated most notably by work of
B. Julia (see for example [J]), develop the idea that by displaying the Rie-
mann zeta function as the partition function of a dynamical system with
spontaneous symmetry breaking at the pole of the zeta function, one can
gain insight into the statistics of the primes of the field of rational num-
bers using the tools of quantum statistical mechanics. Their construction
of such a dynamical system as a 1-parameter automorphism group on an
appropriate Hecke algebra has done a lot to enrich the dictionary between
concepts from number theory and concepts from quantum statistical me-
chanics. Moreover, it has been a motivation and guide for the considerations
of the proposed approach to the Riemann Hypothesis in [C].
A generalization of the work of [BC] to the case of arbitrary global fields

was proposed in [HaLe]. In the number field case, a Hecke algebra con-
struction using semi-group crossed products was proposed in [ALR], see
also [LR1] and [LR2]. A more general study developed in [L] applies in
particular to the dynamics on this algebra for the class number 1 case. In
the present article, which owes a great deal to both approaches, we con-
struct a different generalization for number fields of the dynamical system
of [BC] having the full Dedekind zeta function of the number field as par-
tition function. In [HaLe] and [L] this is only achieved when the number
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field has class number 1. For class number greater than 1, the construc-
tion of [HaLe] is not canonical and the partition function recovered is the
Dedekind zeta function with a finite number of Euler factors removed. The

advantage of our treatment comes from viewing, by contrast to these other
approaches, the ideals rather than just the principal ideals as playing the
same role as the positive integers do in [BC].
The dynamical system we construct has a natural symmetry group which

displays the phenomenon of spontaneous symmetry breaking at the pole of
the Dedekind zeta function. In mechanical terms, this means that for inverse
temperature {3 less than 1 the temperature is high enough to create disorder
in the system, so that the equilibrium state is unique and invariant under the
action of the symmetry group. At the critical temperature /3 = 1 a phase
transition occurs, so that for /3 &#x3E; 1, when the temperature is low enough,
the particles of the system start to align and the symmetry is broken. The
equilibrium states are then no longer unique and the symmetry group acts
on the extremal points of the compact convex space of equilibrium states.
These equilibrium states are, in the C* -algebraic formulation, the KMS,3
states. In [BC], §1, an overview of the C* -algebraic approach to quantum
statistical mechanics is given, including the definition of KMS,a states.

I would like to thank M. Laca and I. Raeburn of Newcastle University,
Australia, for their hospitality in August 1996 and August 1997 and for
introducing me to their work with J. Arledge and to the developments
subsequently pursued by M. Laca. I also thank D. Harari and E. Leichtnam
for their interest in my ideas.

2. STATEMENT OF THE THEOREM

We begin by introducing some notations and conventions. Let K be a
number field of degree d over Q and with ring of integers C~ . Let MK be
the set of places of K and MK the subset of finite places. For v E MK we
choose a valuations 1 1, normalised as follows: let Kv be the completion of
K at v and dv - [Kv : w I be the local degree. Then for x E Kv we set

where II Ilv is the unique valuation on Kv extending the usual p-adic or
archimedean valuation on In particular, for this normalisation we have
for all x E K, x # 0 the product formula

For v E Mk, let
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be the ring of integers of Kv with unit subgroup

For most of this article we shall work with the finite ad6les A , that is

the restricted product of the Kv with respect to the E MK . An
element a E A is therefore an infinite vector a = (av)ve mg indexed by
the set MK with av E Kv and av E 0, for all but finitely many v E
Mk. The finite adeles form a ring with respect to component-wise addition
and multiplication. We have a natural embedding K -+ A , whose image
is called the principal ad,61es, which is just the diagonal embedding x 1 &#x3E;
(X)IEM’ induced by the embeddings of K into Kv for v E MK . The image
under this embedding of an element a E C7 is an element llvEMo K
the maximal compact subring of A. Let W = llVEMo Cw be the group ofK

units of R . Let J be the group of finite id6les, that is the group of invertible
elements of A consisting of the restricted product of .Kv = Kv B 101 with
respect to 0*, v E MK . An element j E J is therefore an infinite vector
j = indexed by the set MK with jv E K; and jv E for all

but finitely many v E MK . The module on J is defined by

The image under the diagonal embedding of K* into J is called the princi-
pal id6le group. The semigroup I = J n R satisfies = J . For v C Mk I
let q3, be the prime ideal associated with v ,

The quotient has finite cardinality N(fl3v) and for any av E Cw ,
there is a unique integer ordv av such that = 

.

For a E I we denote by 2( the ideal

and call it the ideal associated to a . It is well-defined as ordvav = 0 for
almost all v E and

Moreover, we have in this way a short exact sequence, with arrows semi-

group homomorphisms,
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where I denotes the semigroup of integral ideals of C~ . By the Strong
Approximation Theorem, there are additive isomorphisms between 

and The semigroup I acts on A by multiplication
and preserves R , so that multiplication by a E I induces an endomorphism
of A/R

If a E I and y E A/R the equation a ~ x = y has N(2l) solutions in A/R
where 2t is the ideal associated to a. We denote the set of these solutions

by [x : = y~ . Let C(A/R) =: spanf6x : x E A/R} . The formula

where a E I and % E I is the associated ideal, defines an action of I by
endomorphisms of the associated C* -algebra C* (A/R) .

Let + : I - I with + : j H j+ denote any splitting semigroup ho-
momorphism of the above exact sequence such that C~+ _ (1, 1, ... ) , the
identity in I, and such that for any principal prime ideal JrO with gener-
ator 7r (so that we could replace 7r by u7r for any unit u of 0) we have
(7r0)+ = (7r, ~r, ... ) , the image of the natural embedding of 7r as a principal
idele. This condition is essential to ensure that there is sufficient interac-

tion between the different primes to exhibit the phenomenon of spontaneous
symmetry breaking. We call such a splitting of the short exact sequence an
interactive splitting. Let 1+ be the sub-semigroup of I given by the image
of I under a fixed map +. We take as our basic algebra the crossed product
associated to the triple (C* (A/R), I+, a) in the sense of [ALR], see also §4
of the present paper. This is the universal object for covariant representa-
tions of this triple, namely pairs (7r, V) where 7r is a unital representation
of C*(A/R) on a Hilbert space H and V is an isometric representation of
I on 3-l satisfying

We denote this semigroup crossed product by CK = C* (A/R) I+ . It is

the universal C* -algebra generated by E and lpa : a E I+}
subject to the relations

where % is the ideal associated to a .
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Let E IL8} be the I-parameter automorphism group of CK given by
the following action on the symbols e(x), x E A/R and pa, a E I+,

where 3 is the ideal associated to a. Consider the Hilbert space l2(I+)
and let (ca)aEI+ be the standard orthonormal basis. Define an unbounded
positive operator H on 12 (1+) by

Notice that HC1 = 0 where 1 = (1)vEMK . Consider, for a fixed admissible
character X (see §5) on A/R and any u E W , the involutive representation
pu of CK on l2(I+) which is the unique extension of the representation
defined by

We have

The main result of this paper is the following generalization of Theorem 5
of [BC] and Th6or6me 0.1 of [HaLe], see also Proposition 46 of [L]. Its proof
follows closely the treatments of [BC] and [HaLe], although differences do
arise and we content ourselves in §5 with an explanation of how to handle
them, leaving the remaining details to the reader.

Theorem. Let K be a number field. The C* -dynamical system 
has symmetry group W , with the action [u] E Aut(CK) of u E W given on
e(x), x E A/R and J-La, a E 1+ by

This action cornrnutes with a, so that [u] o at = at o [u] for u E W, t E R.
Moreover,

(1) for 0  j3  1, there is a unique KMSj3 state It is a factorial
state of Type III, and the associated factor is the Araki-Woods factor Roo.

(2) for {3 &#x3E; 1 and u E W , the state

is a KMSp state on (CK, ot) which is factorial of Type 100 where

is the Dedekind zeta function (at /3) of the number field K. The action of
W on CK induces an action on these KMSR states which permutes them
transitively and the map u H is a homeomorphism of the compact
group W into the space of extreme points of the convex compact
Choquet simplex K~ of states on 
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(3) the Dedekind zeta functions (K of the number field K is the partition
function of (CK, ot) -

3. A SYSTEM WITHOUT INTERACTION

Generalising ~2 of [BC], we can construct a non-interactive system, which
will be useful in the sequel, as follows. Let P be the set of prime ideals of
o and S be the second quantisation functor (as in [BC], p416).

Proposition 1. (a) For every prime ideal q3, 7 let be the isometry in
Sl2(P) = 12(I) given by the polar decomposition of the creation operator
associated to the unit vector E Sl2 (P) 7 where f ez, 93 E 11 denotes
the standard orthonormal basis of 12(I). The C* -algebra C*(1) generated
by the J.l’1J with ~3 prime is the same as that generated by the isometries

2t E I defined by,

The C*-algebra C*(I+) generated by the a E 1+ is isomorphic to

C* (I) . .
(b) Let T’-1J be the Toeplitz C* -algebra generated by /-L’-1J. Then C* (I) is

the infinite tensor product

(c) Let H be the operator in 12 (I) given by

then the equality

defines a 1-parameter group of automorphism of C*(1) which may be fac-
torised as

where

Proof. By analogy with the proof of Proposition 7 of [BC]. 0

Notice that the dynamical system at, once transported to C*(I+), is the
restriction to that algebra of the dynamical system Qt on CK defined in §2.

Similar arguments to that given in [BC], Proposition 8 for the case K =
Q give the following result which underlines the fact that, as the above
system is an infinite tensor product of non-interacting systems, it displays no
phenomenon of spontaneous symmetry breaking at a critical temperature.
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Proposition 2. (a) For every 0 &#x3E; 0, J there is a unique KMSQ state on
(C* (.1"), at). It is the infinite tensor product

where the unique state on (T~, ot,T). The eigenvalue list of
’D,3,13 is

(b) For /3 &#x3E; l, the state is of Type and is given by

(c) For 0  3  1 the state is of Type III, and the associated factor
is the Araki-Woods factor Roo.

4. SEMIGROUP CROSSED PRODUCTS AND A SYSTEM WITH INTERACTION

In this section, we recall some basic facts on semigroup crossed product
C* -algebras needed for the construction of CK. We use as references the
articles [LR2] and [ALR] (see [LRI] and [L] for some historical back-
ground including the relation to work of Nica (Ni~). Our semigroups will all
be abelian without zero divisors. A semigroup system is a triple (A, S, a)
consisting of a separable unital C* -algebra A, a semigroup S and an action
a of S by endomorphisms on A. These endomorphisms need not be unital.
Define a covariant representation of (A, S, a) to be a pair (7r, V) consisting
of a unital representation 7r of A on a Hilbert space ’h and an isometric

representation V of S on 1£ such that

Lemma 1. Suppose (.A, S, a) is a semigroup system which has a non-trivial
covariant representations. Then there is a triple consisting of
a C* -algebra B, a unital homomorphism LA : ,A - B and a semigroup
homomorphism LS of S into the isometries of B such that

(1) for a E S and x E A,
(2) for every covariant representation (7r, V) of (A, S, 0152) there is a unital

representation 7r x V of L3 with (7r x V) 0 tA = 7r and (7r x V) o ts = V ,
(3) the C* -algebra L3 is generated by x E ,A} U Its(a) : a E SI.
The triple (B, LA, r,s) is unique up to isomorphism.

Proof. This is a direct application of Proposition 2.1 of [LRl]. El

We define the crossed product of A by S to be the unital C* -algebra L3
together with the pair (tA, LS) - We denote this crossed product by S,
or by A x S when a is understood.
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Returning to the situation of §2, the semigroup I = J n R acts on
C*(A/R) via C*-endomorphisms defined by

Right inverses for these endomorphisms are given by the action a of the
semigroup I on C*(A/R) defined by

were 21 is the ideal associated to a. The ad, a E I are indeed C*-

endomorphisms of C* (A/R) , as one checks by a straightforward compu-
tation.

A non-trivial covariant representation of (C* (A/R), I, a) on is

given by (A,L) , with A the left regular representation of C*(AIR) on
l2 (A/R) and

where % is the ideal associated to a. Here y E AIRI is the usual

orthonormal basis of 12(Aj R). Hence the system (C*(A/R), I, a) has a
crossed product x a 1.

The C*-algebra of [ALR], ~1, where Ox is the semigroup
of non-zero integers of K, is obtained by embedding C~" in I diagonally
by a -+ E Ox and considering the restriction of a to an action
of Ox . 

Let T be any sub-semigroup of I and let x a T be the semigroup
crossed product obtained by restricting a to an action of T. We have the
following generalization of Proposition 2.1 of [ALR] which is a reformulation
of the universal property of C* (A/R) T in terms of generators and
relations.

Lemma 2. The semigroup crossed product C*(A/R) xa T is the univer-
sal C* -algebra generated by elements a E T} and le(x); x E A/R~
subject to the relations

where 2l is the ideal associated to a .
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Now consider, as in §2, the semigroup crossed product obtained by re-
stricting a to an action of the image I+ C I of a fixed interactive splitting
of the short exact sequence

We form the corresponding semigroup crossed product CK = C*(A/R) &#x3E;JQ

I+. The presentation of this algebra as the universal C*-algebra generated
by elements a E I+} and {e(x);x E AIRI subject to the relations
of Lemma 2, with T = I+ , was given in §2. One can deduce from these
relations two further ones, given by

where 2( and B are the ideals associated to a and b. The analogous
observation for K = Q was made in [ALR]. Compare with Proposition
18 of [BC]. Moreover, arguments similar to those of [BC], p. 433, show that
the universal involutive algebra C generated by the (pa : a E 41 and

E A/R} subject to the relations of Lemma 2, with T = I+, is a
dense sub-algebra of CK spanned linearly by the (independent) monomials
of the form pae(z)p§ where a, b E I+ have coprime associated ideals and
x E AIR.

It is now easy to see how the action of the symmetry group W on CK
arises. The group W acts by outer automorphisms on CK . To compute
this action, consider CK as a subalgebra of C* (A/R) )qa I and let u E W
act by ~~~ E Aut(CK) where

The right hand side is computed within the algebra C*(A/R) A, I. That
this is the action of W on CK described in the Theorem is immediate.

Lemma 3. The fixed point algebra CK of the action of W on CK is the

C* -algebra C* (I+) generated by the J-La, a E 1+.

Proof. One adapts easily the proof of [BC], Proposition 21 (b). D

Let J+ = The C*-algebra CK is isomorphic to in

the sense of [BC], the C* -Hecke algebra associated to the almost normal
inclusion PR C PA where

The dense involutive Hecke algebra associated to this inclusion as defined
in [BC], ~1, is isomorphic to the algebra C introduced above.
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We can use the identification of CK as a C* -Hecke algebra and define
the dynamical system in the same way as in [BC], Proposition 4. This gives
the same dynamical system (CK, at) as that of §2. It is the I-parameter
group lot : t of automorphisms of CK determined by their values on
the spanning monomials,

for a, b E I+ with associated coprime ideals 2(, 93 and for x E Com-

pare with [L], Proposition 7.
Notice that the algebra C*(AIR) m, I is not the one giving rise to in-

teraction. It is a restricted product over the primes. It is the splitting
+ : I - I with the appropriate properties which gives rise to interaction,
as we shall see in §5.

5. OUTLINE OF THE PROOF OF THE THEOREM

It remains to comment on parts (1) and (2) of the Theorem. Let us

suppose first that fl &#x3E; 1. Recall from [HaLe], §5 the following facts about
characters of A/R. A character xv of E MK is said to be
admissible if it is non-trivial on where 7rv is a local uniformiser
at v . An admissible character always exists for all v E MK . A character X
of is said to be admissible if there exists for all v E MK an admissible
character xv such that, for all y = (yv) E A/R,

The group of characters of A/R is isomorphic to R. Indeed, on fixing an
admissible character X this isomorphism is given by

and the application

of W into the characters of A/R is injective.
One verifies easily and in a similar way to Proposition 23 of [BC] that

the maps pu of CK on l2(1+) given in §2 are indeed representations and
that the operator H implements the dynamical system ot,

- , , , , .

It is clear that the states of part (2) of the Theorem are KMS,3 -states
for
We now want to study the map u H E W . For this, we adapt

the arguments of [HaLe] §5.3. Consider the representation
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Let be the unit vector of l2(I+) ~ l2(1+) defined by

where 2( is the ideal associated to a . For each x E CK we have

Let C*(1+) denote the C*-algebra generated by the pa, a E I+ . Each

vector Ea 0 e, of the basis of 12 (1+) 0 12 (1+) belongs to the closure of
pp,~(C*(I+))(52~,~). Therefore is a dense sub-vector space
of 12 (1+) 0 12 (1+) and (p,3,,,,, defines the GNS representation of 
The representation pu is irreducible, so that the commutant of 
is Id 0 £(l2(1+)). The von Neumann algebra M generated by is

thus C(12(j+)) 0 Id and M n M’ has trivial centre. Therefore is a

factor state of Type I , with list of eigenvalues {~K(,~)-1N(z()-~,~1 E T}.
As is factorial, it is an extremal KMSp state.

Notice that determines a unique state on the von-Neumann

algebra M = G(L2(I+)) ~ Id generated by po,,,, (CK),

For each s &#x3E; 0, the operator e-SH E M . Hence given we can deter-

mine, for each x E A/R, the value of

--- ,. , . - , ,

Therefore (D,3,,, determines uniquely the character z e x( u . x) of A/R
and as we remarked already, this map from W to the characters of A/R
is injective. It follows that the map u M 4lp,u is an injective continuous
map of the compact group W into the space E(K,3) of extreme points of
the convex compact Choquet simplex Kp of KMSR states on (CK, Qt) .

For any u E W , we have

Let IF be an extremal KMSp state on The following two KMS {3
states 

-

are invariant under the action of W . They are therefore completely deter-
mined by their restriction to CK = C*(I+). By Proposition 2 of §3, the
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system (C*(I+),at) is without interaction and has a unique KMS,3 state
denoted by lf p . Therefore,

As T is extremal, this gives two decompositions of the same state as a
barycenter of measures and as K/3 is a Choquet simplex,

.. ’" .... /" 7 " .I

for almost all u E W . Hence, for some u, v E W we o c-1
and T is in the image Since u H is continuous and

bijective and W is compact, it is a homeomorphism with range E(K,3).
This concludes our treatment of part (2) of the Theorem.
Now suppose 0  (3  1. The key steps in the proof of part (1) of the

Theorem are the generalizations of Lemma 27 and Corollary 29 of [BC]
to the dynamical system It is here that the assumptions on the
interactive splitting + : I - I+ play a crucial role. We shall again make
use of the C* - dynamical system (C* (I+), o~t) with its unique KMSA state
-P,3. We consider as in [BC] for the case K = Q, the spectral subspaces
Cx,x for each character X of the abelian compact group W ,

Therefore = C*(I+) by Lemma 3.

Lemma 4. Let 0  1 and let ~Y be a KMSp state on (CK, at) . Then:

(1) The restriction of W to C*(I+) is 

(2) The restriction of W to the spectral subspace CK,x is zero when X is
non-trivial.

Proof. Part (1) is clear. For part (2), we need to generalise the proof of
Lemma 27, (b) and (c) of [BC]. We say V E C*(A/R) = C(R) is localised
in a finite subset F of finite places if

Similarly, given a character X of W , we say that it is localised in F if it
factors through the projection W - ~’ Let w E MK B F and let
93w be the corresponding prime ideal of 0. Let pw = be the

image of q3w under the given interactive splitting -i- . To Pw we associate
the following element gw C W . Writing gw = we let

Our assumptions on the interactive splitting ensure that, at least on the
images under + of the principal prime ideals coprime to F , the map Pw H
gw is not trivial. By Dirichlet’s Density Theorem (see [N], Theorem 6.2,
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p131), we know that there are infinitely many principal prime ideals coprime
to F. For any f E C(R) and a E I+, we have (see §4) = J-1afa where

= f (ax) for x E R. If f is localised in F and w tf- F we have
~g~,~ ( f ) so that

Let V be a partial isometry in C* (A/R) and X be a non-trivial character
of W both localised in F and such that

Then, letting f = V we have

which gives the analogue of equation (5) of the Proof of Lemma 27 in [BC],
p. 445. By continuity, we may view X as a character of G = ITvEF (~v~(1 +

for certain minimal integers nv &#x3E; 0, v E F . Let be the (finite)
cycle ITvEF q3)" . Then (0 jQ:O)*. An interactive splitting + can
be extended multiplicatively to a group homomorphism from the fractional
ideals J’ = -E-11 of K to J. Let J’(c) be the group of fractional ideals
prime to C. Let be the group of principal ideals prime to c and
Pe be the subgroup of principal ideals generated by elements a E K*
with modulo for all v E F. There are natural projections
Pl : j -4 llvEF Kv and p2 : with (pi o +)(.’()) contained
in By our assumptions on the interactive splitting, any prime
ideal in which is non-trivial mod Pc has non-zero image under the
map P2 opl o +. Let h = and hc = Card /93c) -

is non-trivial the quotient group is non-trivial and we have

he &#x3E; h. The Dirichlet density ([Lg], p167) of each class in F(L")/Tc is h~ ,
so that there are infinitely many prime ideals in each class of 
Having checked these points, the rest of the proof of Lemma 27 of [BC]
adapts easily to our situation. D

Part (1) of the Theorem is now an immediate consequence of Lemma 4.
One can develop an analogous discussion to that of [BC], §3 relating the C*
Hecke algebra CK to products of trees. This enables one to compute ex-

plicitly the unique KMSp state for 0  13  1. To define the generalization
of the function w,8 of [BC], Theorem 5, write y E A/R as ,y = a/b with
a = (av)v, b = (bv)v E R. For all v with yv # 0 take a", bv E Ov non-zero
with either av or bv in (7v . If yv = 0, let av = 0 and bv = 1. Then, if 0153

is the ideal associated to b, write its prime factorisation as 0153 = 
Set
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The discussion of [BC], §3 goes through with P+ replaced by PA and P~
replaced by PR (defined in §4 of this paper), the Hilbert space as in

[BC], Proposition 32 having now a natural basis indexed by PA /PR with
an inner product invariant under left translation by PA and given by

Here, the vector £o is the class of Let 6 be the module on PI defined
by

One shows that the opposite C -algebra CK admits a representation p
in given by the right convolution with 8(3/2 f for any Pt, -bi-invariant
function f on using the description of CK as a Hecke algebra. Finally,
one checks that the vector 6’c defines a KMS(3 state on (Cx, at ) , which gives
therefore the unique one,

The proofs of all these statements are straightforward generalizations of
those for K = Q given in [BC].

6. CONCLUDING REMARKS

As we said in the Introduction, our treatment differs from those of [HaLe]
and [ALR] in that we view the ideals rather than just the principal ideals
as playing the role of the positive integers in [BC]. By choosing our in-
teractive splitting + in such a way that for K = Q we have I+ = N&#x3E;o ,
the positive integers, we recover the C* -Hecke algebra dynamical system

of [BC]. Let ~S+ denote the semigroup given by the image
of the semigroup S of principal integral ideals of 0 under an interactive
splitting + : I - I. Notice that when (~ is not principal S+ need not
be a sub-semigroup of the principal id6les. This is because the map + is
built up multiplicatively from its value on the prime ideals, and not all of
the prime ideals are principal. What happens when we consider the algebra
CK = x, S+ and restrict Q and the action of W to form the
C* -dynamical system (CK I at)? The group W acts on CK by symmetries
commuting with the action of the at - Recall that if .~ denotes the group of
fractional ideals of K and P denotes the subgroup of principal ideals, then
the cardinality h of the ideal class group is called the class number
of K. We denote by R1,... , Rh the ideal classes of .~’ modulo P, with
Rl = P The Hilbert space 12(/+) is the direct sum of the Hilbert

spaces = l2((Z n i = 1,... h, and each 7-li is a cyclic representa-
tion space for C~. It is easy to see, for example when ,Q &#x3E; 1, that one has
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on a larger family of extremal Type KMS,3 -states, given by

where Hi is the restriction of H to Hi and
«

is the partial Dedekind zeta function (at {3) of the number field K, asso-
ciated to Ri . For (3 &#x3E; 1, a similar family of KMS{3 states indexed by the
ideal class group occurs even for the analogue for number fields of the non-
interactive system of Proposition 8 of [BC] as defined in §3 of the present
paper (see also [L], Remark 47).

The question as to what extent W can be interpreted as a Galois group is
treated in [HaLe], once appropriate modifications are made to account for
the fact that we work here with the full set of finite places of K . The

conclusion of that discussion is that only in the case K = ~ can one
identify as in [BC] the symmetry group W with a true Galois group, in
that case the Galois group of the maximal abelian extension of Q. As

pointed out by R. Langlands, one can view the Artin correspondence in
class field theory as an equality between appropriate Artin and Dirichlet
L-functions (see [N], Chapter V, §5). One can set up these L-functions (for
the case of an abelian extension, where they coincide) using the language of
second quantisation inherent in the setting up of the non-interactive system

(compare with [BC], §2). It would be interesting to construct
more general types of Euler products using second quantisation.
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