
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

JÜRGEN KLÜNERS
On computing subfields. A detailed description
of the algorithm
Journal de Théorie des Nombres de Bordeaux, tome 10, no 2 (1998),
p. 243-271
<http://www.numdam.org/item?id=JTNB_1998__10_2_243_0>

© Université Bordeaux 1, 1998, tous droits réservés.

L’accès aux archives de la revue « Journal de Théorie des Nombres
de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=JTNB_1998__10_2_243_0
http://jtnb.cedram.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


243-

On Computing Subfields.
A Detailed Description of the Algorithm

par JÜRGEN KLÜNERS

RÉSUMÉ. Soit Q(03B1) un corps de nombres défini par le polynôme
minimal de 03B1. Nous nous intéressons à déterminer les sous-corps
Q(03B2) C Q(03B1) de degré donné. Chaque sous-corps est décrit en
donnant le polynôme minimal g de 03B2 et le plongement de 03B2 dans
Q(03B1) donné par un polynôme h tel que h(03B1) = 03B2. Il y a une

bijection entre les systèmes de blocs du groupe de Galois de f et
les sous-corps de Q(03B1). Ces systèmes de blocs sont calculés en
utilisant les sous-groupes cycliques du groupe de Galois qui sont
obtenus à partir du critère de Dedekind. Lorsqu’un système de
blocs est connu, on calcule le sous-corps correspondants par des
méthodes p-adiques. Nous presentons ici une description détaillée
de l’algorithme.

ABSTRACT. Let Q(03B1) be an algebraic number field given by the
minimal polynomial f of a. We want to determine all subfields
Q(03B2) ~ Q(03B1) of given degree. It is convenient to describe each
subfield by a pair (g, h) ~ Z [t] x Q[t] such that g is the minimal
polynomial of 03B2 = h(03B1) . There is a bijection between the block
systems of the Galois group of f and the subfields of Q(03B1). These
block systems are computed using cyclic subgroups of the Galois
group which we get from the Dedekind criterion. When a block
system is known we compute the corresponding subfield using p-
adic methods. We give a detailed description for all parts of the
algorithm.

1. INTRODUCTION

Let E = Q(a) be an algebraic number field of degree n, where a is a
root of a monic irreducible polynomial f E Z[t]. In this article a method
is developed for determining all subfields L = Q(/3) of E of fixed degree m
over Q. We describe each subfield L by the minimal polynomial g of ~3 and
the embedding of 3 into E, which is given by a polynomial h E Q[t] with

fl.
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Lemma 1.1. 1. Each subfield L of E has a representation as a pair
(g, h) E x Q[t], such that g o h = 0 mod jZ[t].

2. A pair (g, h) E Z[t] x Q[t] such that g o h - 0 mod and g irre-

ducible describes a subfield L of E.

Note that the coefficients of the embedding Polynornial h are not neces-
sarily integral because the equation order is in general not integrally
closed. W.l.o.g. we assume that the degree of h is less than n, otherwise
we replace h by its remainder modulo f . The lemma is used to check if a
pair (g, h) presents a subfield L of E. Such a subfield L is represented in
the form hence isomorphic fields are not distinguishable by g
alone.

Example 1.2. We determine all subfields L of E = of degree
3. There are three subfields with characterizing pairs (t3 - 108, -t2), (t3 -
108, i2 t5 + 2 t2 ) and (t3 - 108, -12 t5 + 2 t2 ) . In all cases the minimal poly-
nomial of ~3 is the same; however, we are able to distinguish the three

isomorphic subfields by their embedding polynomials.

There are several other algorithms [1, 3, 8, 9, 12, 14, 15] for calculating
subfields. In this article we improve the methods described in [12]. The

generating polynomials are constructed by factorizations of polynomials
over finite fields and Hensel lifting over p-adic fields. We give improved
algorithms for the computations in p-adic fields. In the combinatorial part
of the algorithm we can reduce the number of possibilities dramatically.

Three other methods [9, 14, 15] need factorizations of polynomials over
number fields, respectively factorizations of polynomials over the rational
integers of much higher degree than the degree of the given field. The
method presented in [1] needs hard numerical computations and lattice
reduction algorithms. Although the algorithm in [3] computes subfields it
is not guaranteed that all subfields will be found. A comparison of running
times is given in section 8.

This paper is organized as follows. In the next section we focus on

algorithms for computations in p-adic fields. The block systems of a Galois
group and their relation to subfields is presented in section 3. In section
4 and 5 we develop methods to compute generating polynomials resp. the
embedding of a subfield via its block system. In the last section we discuss
the efficiency of the algorithm and give some examples. This paper contains
the results concerning the subfield computation of the dissertation [11] of
the author.



245

2. UNRAMIFIED p-ADIC EXTENSIONS

The subfield computation is based on p-adic methods. Therefore we give
a detailed description of the algorithms we are going to use for computation
in the p-adic fields.

2.1. Introduction. In the following we recall some fundamental proper-
ties of unramified p-adic extensions. The proofs can be found e.g. in [2, 17].
In the following let .~ and E be unramified extensions of Qp with maximal
orders OF, os and prime ideals p, fl3, respectively. The corresponding residue
class fields are denoted by 0 and E.

Lemma 2.1. For every extension there exists an unique unramified
extension such that 9 and Fq are isomorphic. The extension EIJ7 is
cyclic with isomorphic to 

Lemma 2.2. Let 9/.F be an unrarraified p-adic extension of degree s. If
pi, ... , PS are representatives of a basis of then they are a of-basis
of 0,,.

Using this lemma, it is straightforward to construct a ow-basis of o£. Let
15 E Y[t] be a monic irreducible polynomial of degree s and w E with
w - 15 mod p. Then the equation order o~-~p~ = o Jr + o Jrp + ... + =

o£, where is a zero of w.
The following lemma gives a method to reduce elements of os modulo

.

Lemma 2.3. Let £1 F be an unramified extensions with integral basis
and k E N. Then we have

x E q3 k if and only if xi E pk (1  i  s).
Proof. Since 93 = pos it follows that fl3*’ = pkoe and the assertion is an
easy consequence. 0

2.2. Arithmetic in unramified p-adic extensions. Using Lemmata 2.2
and 2.3 we are able to generate p-adic extensions, such that their equation
orders are maximal. Now we explain how to compute the sum and the
product of p-adic numbers. This will be done in the same way as the
arithmetic in algebraic number fields. In the following let x = Ei=O Xipi
and y = Es-1 yip’ be elements of os (xi, y2 E of (0  i  s)). Then we
have:

The product of x and y can be easily described via polynomial operations.
9 . Y
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that xy = We have to solve the problem to find a basis repre-
sentation of xy. We define P~y := mod w. Since w(p) = 0 it follows
that Pxy(p) = xy and deg(Pxy)  s. From 

.

We note that we need no divisions to reduce the product modulo w since
w is monic. We need s2 multiplications and additions in OF to compute

and s (s - 1) multiplications and additions in OF to reduce the result
modulo w. This leads to the following lemma.

Lemma 2.4. The sum of two numbers x, y E oE can be computed using s
additions in OF. The product of two numbers x, y E oE can be computed
using 2s2 - s multiplications and additions in OF.

We remark that it is possible to divide two numbers x, y E oE in an
analogue way to the number field case.
Now we explain how to reduce a p-adic number modulo p~, where p is

an odd prime and k E N. Let

k-1

Then we define x mod pk as E zip2, which can be interpreted as an integer
i=o

in { ~, ... , Since we need frequently to embed small (negative)
integers into the p-adic field, we chose the symmetric residue system. In our
applications this yields usually smaller representatives. Using Lemma 2.3
we are able to reduce arbitrary p-adic numbers modulo prime ideal powers.

2.3. Hensel lifting. Let f E Z[t] be a monic irreducible polynomial and
p t disc( f ) be a prime. Let f be the image of f under the canonical
embedding from Z[t] to Zp[t] . Our aim is to factorize f over an unramified
extension Since f mod p has no multiple factors we know that f
has no multiple factors in ,~’~t~. The factorization can be done up to an

arbitrary p-adic precision using the following lemma.

Lemma 2.5. (Hensel lemma)
Let R be a commutative ring with 1 and b an ideal of R. Let f, and

f2,o be monic, non-constant polynomials with the following properties:
1. f --_ fl,o.f2,o mod b [t]
2. There exist R[t], i = l, 2, ao,o E with al,ofl,o + =

1 + ao,o . 
~ ~ ~ ~ 
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Then for every k E N there exist polynomials fl,k, and ao,k E

R[t] with fj,k monic and non-constant, and  (i =

1, 2) and it] such that the following conditions hold:
1. f - f l,xfz,k mod [t]
2. fi,x m fi,o mod 
3. + a2,kf2,k = 1 + ao , k.
A proof can be found in e.g. [18]. In our examples the ideal b is always

a prime ideal and a finite field. Therefore we can compute the ai,o
using the extended Euclidean algorithm for polynomials over finite fields.
An algorithm to compute the Hensel lifting can be found in [4, 18].

These algorithms are only formulated for two factors. Using induction
this can be extended to more factors. This will be demonstrated by the
following example.

Example 2.6. Let f - flf2f3 mod p. Define fi,2 := flf2 and deter-
mine the following factorization using Hensel’s lemma: f - fl,2f3 MO dp k
Now compute fi,2 = 11 12 mod pk. Combining these results we get f -

mod pk.
Now we are able to give a first method to factorize a polynomial f E 

over an extension 7 modulo pk:
1. Factorize f f, ... fr mod p.
2. Compute f m 11 ... fr mod ~k using Hensel lifting.

The disadvantage of this method is that all computations are carried out in
7. Assuming the degree of 0/Qp is 10, we need 190 multiplications in Zp
to multiply two elements of oT. We improve this approach by computing
some factorizations over smaller fields. This will be demonstrated in the

following procedure:
1. Factorize f - 11 ... fs mod p.
2. Compute f * fi ... fs mod pk using Hensel lifting in Zp[t].
3. For i = 1, ... , s do:

(a) Factorize h = fi,l ~ ~ ~ fi,ri mod p.
(b) Compute fi m fj,i ... h,ri mod p*’ using Hensel lifting in 

4. Combine the results: f = /i,i -’ - mod pk.
We demonstrate this by the following example:

Example 2.7. Let f (t) = t12 + tll - 40t9 + 180t$ + 426t7 + 89t6 -
444t5 - 75t3 + 27t2 + llt + l. We want to factorize f over an un-
rdmified extension 7/Q3 of degree 3 modulo p2. In a first step we compute
the factorization modulo 9 and get:
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In a second step we compute the Hensel lifting of each factor in modulo

p2, where F is generated by a zero p of v(t) = t3-t+1. We use the notation
[a, b, c] for a + bp + cp2 and get: 

.

We have factorized a polynomial of degree 12 but we have applied the
Hensel lifting over 7 only for polynomials of degree 3. An important fact
was that it was easily possible to embed Zp in o x. Suppose we have a poly-
nomial of degree 4 over Zp and we want to factorize it over an unramified
extension £ of degree 4. Since the unique extension £ is cyclic over Qp , f
factorizes in four linear factors over E. We know that E has a subfield F
of degree 2. We know that f splits over o x into two quadratic factors. A
natural idea is first to factorize f over o Jr and then to factorize the factors
over o£. If we want to do this we have to solve the problem in which way
we can embed the elements of o Jr in o£. It suffices to give an image of all
elements of a basis of 

Instead of simple p-adic extensions of ~p we rather consider towers of
extensions. Doing this we can embed trivially the elements of o z in o£.

Definition 2.8. Let p E P, n = pr with pi E P and p2  ... 
pT. We call an extension 0 = over Qp = Fo successively generated, if

= where Ti is a zero of an irreducible and monic polynomial
vi E [t] of degree pi (1 ~ i  r). We denote the prime ideals in 
with 

_ _

The following lemma follows immediately.

Lemma 2.9. Let p E P and Tr/Qp be successively generated. Then there
is a canonical embedding from to oyi (1  i  r).
Now we give the whole algorithm.

Algorithm 2.10. (Hensel lifting)
Input: p E f E Zp[t], successively generated.

Output: Factorization of f in [t] modulo pT .

Step l: Compute the factorization of f = fo,l ~ ~ ~ 10,80 mod pk.
Step 2: For i = 1, ... , r do

1. Compute the factorizations of fi-,,j in mod p (1 
J 
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2.4. The generalized Newton lifting. Let F be an algebraic number
field and R an order in F. The special case F = Q and R = Z is possible.
Let f, g E R[t] be irreducible polynomials of degree n resp. m. A zero a of
f generates the number field E = F(a). Furthermore we know a modulo
p-approximation 00 E R of a zero of g, that means 0 mod pR.

In the following we use the notation mod pk instead of mod pkR. We
denote with 1 ( f) the principal ideal in R generated by disc( f ). We choose
a prime p such that gcd(pR, a( f )c~(g)) = R. Using the extended Euclidean
algorithm we can compute an element wo e oE such that wog’(00) = 1

mod p holds. In the following we construct elements with the fol-

lowing properties:

We use the following double iteration:

The correctness can be easily verified [10]. We remark that it is possible to
solve our problem using the following iteration:

The disadvantage of this approach is that divisions are much more com-
plicated to compute. If we analyze the double iteration we notice that the
evaluations and are the most expensive steps. Using Horner’s
scheme we need (m - 1) + (m - 2) = 2m - 3 multiplications of algebraic
numbers of degree n where m = deg(g). We need 2n2 - n multiplications
in R to multiply two numbers in E. Therefore we need (2m - 3) (2n2 - n)
multiplications in R to compute their evaluations.

It is better to first compute 1, ~~, ... , /3"k which can be done using m -1
multiplications in E. After this we need m + (m - 1) multiplications of
elements of F with elements of E to compute the evaluations. Altogether
we need (m - 1) (2n2 - n) + n(2m - 1) = (2m - 2)n2 + mn multiplications
in R. Using this approach we save about half of the multiplications. We
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have not looked at the size of the coefficients. Practical experience shows
that the second approach is about 50% faster than the first one.

Algorithm 2.11. (Newton lifting)

Step 4: Print ,Q~ and terminate.

In the following we give a variant of this algorithm. In our application
of the Newton lifting we want to find an element ,~ E E with = 0. We
know estimates for the numerators and denominators of the coefficients of

0. In this case the following lemma is very useful.

Lemma 2.12. Let such that (U, M) = 1 and suppose that there
exists a pair of integers (C, D) such that C - DU (mod M) with D &#x3E; 0

and D  M/2. Then the pair is uniquely determined and there exists
an efficient algorithm to compute it.

The proof and the algorithm can be found in [5]. We remark that alge-
braic numbers are reconstructed by applying the lemma to all coefficients.

If we know estimations for the numerators and denominators we are able
to compute {3 from Since the a priori estimates we use are usually not
sharp, we want to use a smaller k in the Newton lifting process to compute
{3. One idea is to compute an element 0 from flk using Lemma 2.12. Now it
can be checked if g(,(3) = 0. Unfortunately it turns out that an evaluation
with a "wrong" {3 is very expensive. Therefore we need a good test which
is likely to detect (3 = ~3 at an early stage. This is used in the following
algorithm.

Algorithm 2.13. (Newton lifting)
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3. BLOCKS OF IMPRIMITIVITY

In this section we develop some properties about blocks of imprimitivity.
We recall a correspondence between blocks and subfields, which is very
useful for the computation. In the following let f E Z[t] be an irreducible
monic polynomial with roots {a = aI, ... , in a suitable extension. The
Galois group G = Gal( f ) operates transitively on S2 := {al, ... , 

3.1. Introduction.

Definition 3.1. (Blocks of imprimitivity)
1. 0 ~ A C S2 is called block (of imprimitivity), if A- fl 0 E {0, Al for

aIlTEG.
2. A = (1 ~ i  n) and A = S2 are called trivial blocks. G is called

imprimitive if there exists a non-trivial block. Otherwise G is called

primitive.
3. Blocks ~1,... , Am with Ai =,4 i  j  m) are called a

(complete) block system, if the set remains invariant
under G.

If A is a block it is easy to see that A’ is a block, too. It follows that each
block is contained in exactly one block system. The number of elements in
a block or the number of elements of a block of a block system is called the
size of a block or a block system.
The proof of the following theorem can be found in [20, Theorem 2.3].

Combined with the main theorem of Galois theory we get a correspondence
between block systems and subfields.
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Theorem 3.2. The correspondence A H GA := (T E G ~ I ~ 7 = Al is a

bijection between the set of blocks which contain ce and the set of subgroups
of G containing the isotropy subgroup Ga of a.

The following diagram illustrates our situation:

We have a bijection between subfields L of E and blocks A which contain
cx. In this case we say that L corresponds to A. The proof of the following
lemma can be found in [20].
Lemma 3.3. Let Bl and B2 two blocks which contain a with corresponding
subfields L1 and L2 of E. Then B := Bl fl B2 is a block which contains a.
It corresponds to a subfield L = LlL2 of E. Furthermore Ll is a subfield
of L2 if and only if B2 C Bl.

This lemma is very useful if some subfields are already known. This will
be discussed later.

Suppose that we know a complete block system O1, ... , which cor-

responds to a subfield L. From H := we get L = Fix(H). Define

Therefore we get 61 E Fix(H) = L. Furthermore the 6j (1  i  m) are all
conjugates of 61. This means that
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is the characteristic polynomial of 61 E L over Q. This polynomial is of the
form g(t) with j E N and § irreducible. In the case that g is irreducible
we have found a primitive element of L. Otherwise the polynomial g has
multiple roots which can be easily checked. In this case we make a linear
transformation f (t) t- f (t - a) with a E Z and compute a new g. Later we
will prove that at most n substitutions leads to multiple roots for g.

3.2. The Dedekind criterion. We have reduced the problem of com-
puting subfields to the problem of computing block systems of the Galois
group of G. This reduction is only theoretical since the Galois group com-
putation is a very difficult problem for higher degrees. We want to use the
knowledge of cyclic subgroups of the Galois group which we get from the
following theorem.

Theorem 3.4. (Dedekind Criterion)
Let R be a UFD, p a prime ideal in R, R := R/p its residue class ring,

f E R[t] and f E R[t] with f - f mod p. If f is square-free, it follows that
G = Gal( f ) is isomorphic to a subgroup of G = Gal(f).

The Dedekind criterion allows us to determine cyclic subgroups of G
which are generated by a permutation 7r E G. Let 7r = be the

decomposition of 7r into disjoint cycles and ni = 11ril the number of zeros
permuted by ~ri (1 ~ i  u). We say that 7r is of cycle type [7~1,... , nuls and
w.l.o.g. we can assume ...  nu. In our situation we choose a prime
p t disc( f ) to obtain a congruence factorization f - fl - ..... fu mod pZ [t].
It follows that n2 (i = 1, ... , u) coincides with the degree of the polynomial
fi. The cycles ~ri permute the roots of fi.

Example 3.5. Let f (t) = t4 + 2 be a generating podynomial of K and

Let p denote the modulus. In the first case p divides the discriminant
and the Dedekind criterion is of no use. In the other cases we get cycles of
cycle type ~1, 1, 2~, [4] and ~2, 2~. In all of these cases the roots can only be
identified modulo p in a suitable finite field.

3.3. Potential block systems. In the algorithm we are trying to enu-
merate all block systems without knowing the Galois group G. So we
enumerate a larger set of potential block systems that can be defined with
the knowledge of a cyclic subgroup of G. This subgroup can be obtained
with theorem 3.4.
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Fix an arbitrary 7r E G. Let 1f = 1fl ... be the decomposition of 1f into
disjoint cycles of length l1fil = ni (1  i  u).
Definition 3.6. A subset A C 52 with d elements is called potential block
of size d, if A1rj fl A E for 1  j  ~ 1(1f)I. A system AI,... Am of
potential blocks of size d is called potential block system of size d, if

Remark 3.7. The definitions potential block and potential block system
depend on 7r. A block is always a potential block and a block system is

always a potential block system.

Our goal is to determine all potential block systems (for one 7r). In the
following we give some useful properties of potential block systems. We say
that a cycle 7ri contains an element cx if this element is not fixed under this
cycle or 7ri = (a) .
Theorem 3.8. Let A be a potential block corresponding to 7r and k be the
smallest positive integer such that A11"k = A. If a cycle 7rl of length nl
contains an element of A, then k divides nl and 7rl contains exactly
elements of A.

Proof. Since A is a potential block it follows that there exists a k with

A 11"J n A = 0 for 1  j  1~ and A 11" k = A.
Suppose that cx is contained in A and 7rl. It follows that all elements of the

form a1rck (c E N) are contained in A and 7rl. From a11"nz = a we see that k
divides nl. Furthermore 7rl contains exactly ) elements of A. D

Definition 3.9. The number k from theorem 3.8 is called inertia degree of
the potential block.

Theorem 3.10. Let AI, ... , Am be a potential block system corresponding
to 7r of inertia degrees I~1, ... km. If Ai and Aj contain an element of the
same cycle, it follows that ki = kj. In this case Ai contains an element of
the cycle ~-t if and only if Aj contains an element of the same cycle.

Proof. There exists a minimal number c E N such that Aic n 0. From
the definition of a potential block system it follows that AYc - Aj. The
assertion follows immediately. D

Definition 3.11. Let A1, ... , Am be a (potential) block system of inertia
degrees 1~ W ~ ... . We call A 2 ~ A" i &#x3E; ... a (potential) block cluster
(1 ~z ~m).
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¿From theorem 3.10 we get that all blocks of a (potential) block cluster
have the same inertia degree.
The preceding two theorems are very important for the construction of

potential block systems. We will construct systems of subsets A1, ... , C

S2 of size d and corresponding inertia degrees I~~ , ... with the following
properties:

1. 

2. If Ai contains elements of a cycle 7rl, then Ai contains exactly ni
elements of this cycle. 

- 

J v . v i

5. All potential blocks of a potential block cluster are contained in
A~, ... , ,Am, that means Aij e {~4.i,... ? (0 ~j  

A system of subsets AI, ... , Am is a potential block system if and only
if it has the above properties. These properties are sufficient to give an
efhcient algorithm to compute all potential block systems and therefore all
block systems.

To compute the minimal polynomial g of a primitive element of a subfield
L we need a method to compute the zeros which are contained in a potential
block. Let p E P with p f disc( f ) and f E IFp [t] be the image of f under the
canonical mapping from Z to Fp. We denote the zeros of f in a suitable
extension Fq of Fp with aI, ... , an. Furthermore let f = E Fp [t]
be a complete factorization. Suppose that 7r = is computed using
Dedekind’s criterion 3.4. We know that ~r2 permutes the zeros of f¿.

Let A1, ... , Ak be a potential block cluster of inertia degree 1~. W.I.o.g.
we assume that it contains the zeros of TTi,... , that means the potential
blocks contain the zeros of 11, ... , Iv. Let

Then permutes the zeros of (1  j G k, 1  i  v). Therefore
all these zeros are contained in one potential block. We want to compute
equation (9). Therefore we are only interested in the product of the zeros
of which is equal to That means that there is no
reason to factor f over a larger finite field.

Definition 3.12. (Polynomial representation of potential blocks and block
systems)

Let A be a set of polynorraials. We say that A is a Potential block in
polynomial representation if the set of zeros of the polynomials in A is a
potential block. We say that a potential block system is given in polynomial
representations if all potential blocks are given in polynomial representation.
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A potential block cluster is given in polynomial representation if all its blocks
are given in polynorrzial representation.

The polynomials of a polynomial representation are not necessarily lin-
ear. Now we can formulate our algorithm to compute potential block sys-
tems.

Algorithm 3.13. (ComputePotentialBlockSystems)
Input: Generating polynomial f of E, the block size d and a prime
- 

p ~ disc( f ).
Output: A list of all potential block systems of size d in polynomial rep-

resentation.

Step 1: Compute f (t) mod 

Step 2: Set Z := {!1,... and call ComputeBlockCluster(Z, d, 0).

Algorithm 3.14. (ComputeBlockCluster)
Input: A set Z consisting of r irreducible polynomials fi in Fp[t], a
- 

block size d E N‘ and a set Y consisting of already computed
block clusters in polynomial representation.

Output: A list of potential block systems of size d in polynomial repre-
sentation.

Step 1: Set k := 1 and ni := deg(fi) (1  i  r).

Step 2: Determine all B C {2,... , r} (including 0) with dk - nl =

EBEB nb and k for all b E B.

Step 3: For all computed B do:
1. 

2. Set Y := Y U {Z’}.
3. If Z = Z’, call PrintBlockSystem(Y’, d);

otherwise call ComputeBlockCluster(Z B Z’, d, Y).
4. Set Y := Y B {Z’}.

Step 4: Terrraanate, if k = nl. Otherwise set k := minfl E 
k and go to Step 2.

Algorithm 3.15. (PrintBlockSystem)
Input: A set Y consisting of r sets Yi of block clusters in polynomial

representation and a block size d.

Output: A list of all potential block systems in polynomial representation
corresponding to Y.
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The above algorithm computes all potential block systems ~4.i,... Am.
Each Ai contains irreducible polynomials which are given over an ex-
tension of IFp . The block consists exactly of the zeros of these polynomials.
We have remarked that we are only interested in the product of the zeros.
It is possible that polynomials in different blocks are given over different
extension fields, but in a block cluster all polynomials are given over the
same extension field. Let A1, ... , Ak be a block cluster. Then we have

(compare (10)):
1

3.4. The intersection of block systems. For the computation of po-
tential block systems we have used the knowledge of a 7r E G. If we do not
find a "good" 7r, we have to consider a lot of potential block systems which
are not block systems.
We have seen in Lemma 3.3 that the intersection of two blocks is a block.

We want to use this in two ways. Firstly we are able to compute new block
systems from existing ones. Secondly we want to reduce the number of
potential block systems to consider. That means, we need one (or more)
criteria to distinguish "wrong" potential block systems from block systems.

Definition 3.16. The intersection of two (potential) block systems
A 1, - - - , and ,~ 1, ... im are the (potential) blocks which are contained
in the set fAi 1  i  m, 1  j  {0}.
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Lemma 3.17. The intersection of two block systems ~1, ... , Am and
O1, ... , Am is a block system of size c E N. The intersection of two blocks
Ai and 0~ is the empty set or contains c el ements (1 ~ i  m, 1  j  m) .
Proof. The assertion follows from the fact that a block is contained in

exactly one block system. D

In the following let O1, ... , Am be a block system and A1, ... , Ar a
potential block system. W.l.o.g. we assume that cx fl A1 and c =

In the sequel we will give some more necessary conditions for
potential block systems to be block systems. We will use this to reduce
the number of wrongly computed generating polynomials and embeddings.
The following lemma is an immediate consequence of the last lemma.

Lemma 3.18. Let M 1 1  i  m, 1  j  r~ ~ {0}. If M
contains an element of size not equal c, it follows that AI,... , Ar is not a
block system.
Definition 3.19. The number c of the last lemma is called intersection
number. If there is an element of size not equal to c in M, the intersection
number is defined to be 0. The intersection number of a potential block
cluster is defined in an analogues way.

Let us consider the intersection O1, ... , of two block systems
Ai , ... , Am and ~,1, ... , Om. We know that the intersection is a block
system, too. Let Al, ... , Ar be a potential block system. We want to
test if ~4i,... , Ar,.t can be a block system. A natural question to ask if it
is necessary to intersect AI,... , Am with all known block systems to get
maximal information.

Example 3.20. To simplify we consider only the indices of the zeros.

Let Q - 1, ... ,12}. Suppose we know two block systems ( 1 , 2, 7, 8},
~3, 4, 9, 10}, ~5, 6, 11, 12} and {I, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12}. The inter-
section of these block systems is {I, 2,}, ~3, 4}, {5, 6}, {7, 8}, {9, 10}, {II, 12}.
We consider the potential block system f 1, 2, 3,10,11, 12}, {4, 5, 6, 7, 8, 91.
Looking at the intersection with the first two block systems we get no contra-
diction. But we have ~ 1, 2, 3,10,11,12~ n {1,2} == {1,2} a~ {1,2,3,10,11,
12} n {3,4} = {3}. This proves that A1, ... , Ar is not a potential block sys-
tem.

This example shows that it is useful to consider all known block systems.
With this method we can decide for most potential block systems that
they are not block systems. We summarize what we have done up to now.
Let L1, ... , L~, be the known subfields and B be a set of potential block
systems.

1. Compute the set S’ containing the block systems corresponding to
L1, ... , Lw.
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2. Compute the intersection of all block systems in S and add the non-
trivial ones to S.

3. Set T := 0 and for all potential block systems Å1, ... , Am contained
in B do:

(a) Intersect A1, ... , Am with each block system from S’ and apply
Lemma 3.18.

(b) If AI, ... , Am passes all tests, then add it to T.
4. Print T.

The block systems which are computed in steps 1 and 2 are known in
most cases. Now we give a method how to compute a block system if we
know a subfield and the zeros of f in some representation. This algorithm
is useful if some subfields are known or if we want to change the prime p.
The following lemma can be easily proved.
Lemma 3.21. Let al, ... , on be the zeros of f and ~31, ... , {3m be the zeros
of g given in the same completion. If are pairwise distinct, then

~1,... Am with

is the corresponding block system.
The intersection method allows us easily to detect many potential block

systems which are not block systems. In the following we give conditions to
exclude a lot of block systems with one intersection. If we look at algorithm
3.15 we see that potential block systems consist of r potential block clusters.
We want to give conditions that a potential block cluster cannot be a part
of a block system. We denote the inertia degrees of the block clusters with
J~1, ... , k. If we analyze algorithm 3.15 we see that each block cluster
consists of si modulo p factors of f . Suppose that Tl (1  i  r) is a set of
all constructed block clusters. In the last step of the algorithm all potential
block systems are constructed in the following way:

We have used the notation vi for ~z,i?.’. (1  i  r). The number
of elements of v only depend on ki and si. We get:

The algorithm generates I potential block systems. Suppose we
are able to show that a potential block cluster vl E Vl cannot be part of
a block system. In this case we have decreased the number of possibilities
by ~Y2 ~ ’ ’ ’ ~ Vr ~. Furthermore we only combine block clusters with the same
intersection number (Definition 3.19). We want to use all known block

systems to get maximal information. We denote with (ci, ... , cw)t the
intersection numbers of a potential block cluster with tb block systems,
where ci is the intersection number with the ith block system.
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Algorithm 3.22. (Intersection algorithm)

defined in the above text. w known block systems.
Set of potential block systems, such that there is no contradic-
tion with the known block systems.

(a) Set Wi,j to the intersection number of vi,j with the
known block systems.

(b) If one of the components of Wi,j equals 0, set Vi :=

Compute all potential block systems Vl,j1 , ... , vr,jr with W1,j1 =
... = W,,j, and vi,ji E v (1  i  r) and print the computed
ones.

Terminate the algorithm.

4. THE COMPUTATION OF GENERATING POLYNOMIALS

We call a minimal polynomial of a primitive element of an extension a
generating polynomial. As in the last sections let E = Q(a), f be the
minimal polynomial of cx, and {c~ = al, ... , be the roots of f . The
Galois group G operates transitively on the roots of f . In the last section
we have seen how to compute potential block systems corresponding to
a permutation 7r. In this section we will explain how to get generating
polynomials from a block system. As a byproduct, we get more necessary
conditions for potential block systems to be block systems. Nevertheless,
we will not get sufficient conditions. Wrong systems remaining after this
step will finally be removed in the concluding step, the computation of the
embedding.

Let Ai, ... , Am be a block system consisting of zeros of f , where the
zeros of Aj are in the splitting field N of E. Furthermore let q3 be an
arbitrary prime ideal of oN lying over p. We denote with E = Nq3 the
p-adic completion. Let (D be the canonical embedding from N to E.
Now let f and al , ... , be the zeros of f in E, where 4P (ai) =

a2 . Letting Aj ( 1  i  m) we define:

Therefore we get:
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Theorem 4.1. Let O1, ... , be a block system and 9 and 9 as defined
in (11) and (12), then = g.

Supposing that O1, ... , is only a potential block system correspond-
ing to 1r we still get 9 E Zp[t] , where p corresponds to 1r. We remark that we
have no method to compute $ explicitly. We know that for each extension

there exists a unique unramified p-adic extension £ /Qp such that the
residue class field equals IF9. In the last section we have developed an algo-
rithm to compute potential block systems Ai , ... , Am. We have identified
the zeros resp. the b2 in a suitable finite field. Using the p-adic methods
presented in section 2 it is possible to compute these values modulo pk.
The following lemma is an immediate consequence.
Lemma 4.2. Let g, g E £ (1 ~ i ~ m) be as defined in (11) and
(12). Furthermore be the maximal ideal of o£. SuPposing
8i = 8 mod pk (1 ~ i  m) and g(t) = 8i) we modpk.
Thus we have 9 == 9 mod pk.

Let M be a bound for the size of the coefficients of 9 and suppose p*’ &#x3E;

2M. Then it follows that choose the symmetrical residue system

{ 2 ... , for the coefficients of g. The following lemma gives us
an estimation for M. It is an immediate consequence of [4, Lemma 3.5.2].
Lemma 4.3. Let g(t) _ defined as in (12). We get:

¿From the construction of g we know that = 1 and bo = ~ f (0).
Supposing the knowledge of an upper bound for B it is easy to compute
an upper bound for the absolute size of the coefficients of g. One way is to

compute approximations of the roots of f in C to derive a bound B. If we
do not want to compute the zeros of f in C we can use an estimation of
Mignotte [16, Theorem 1].
Lemma 4.4. Let f (t)
we have:

It remains to discuss the case when g is not irreducible, i.e. g has multiple
roots. As remarked above, we use linear transforms on f : /(~)~2013/(~+a).
The next lemma shows that this procedure will yield irreducible polynomi-
als g.
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Lemma 4.5. There are at most n linear substitutions to f such that the
constructed polynomial g (12) has multiple roots.

Proof. For 1  i  m we define:

These polynomials are pairwise distinct since they have different zeros. All
polynomials have degree d. This means that at most d evaluations of two
polynomials can coincide. If the b2 in (12) are not pairwise distinct, then
each 6j is a multiple root since g is a characteristic polynomial. There-
fore there are at most d(m - 1) = n - d evaluations values a E Z such
that Di(a) for 2  i  m. If we choose another a E Z for the
transformation we get that all 6j are pairwise distinct. D

This lemma remains valid if the ground field is a finite field. We need
the additional assumption that the finite field contains enough elements.
The following lemma is an immediate consequence.

Lemma 4.6. Let p &#x3E; n and suppose that p f disc(f). Then there are at
most n linear substitutions for f such that p disc(g).

For our embedding algorithm it is important to have p t disc(g). There-
fore we choose primes p &#x3E; n in our algorithm.
Now we give an algorithm to compute generating polynomials for the

subfields corresponding to a block system.

Algorithm 4.7. (ComputeGeneratingPolynomial)
Input: A generating polynomial f of a number field E. A prime p &#x3E; n
- 

and a Potential block system O1, ... , Am in polynomial repre-
sentation.

Output: A generating polynomial g of a potential subfield L, or the mes-
sage, that Ai,... , Am is not a block system.

Step 1: Compute the inertia degrees ki (1  i  m) of the blocks

All ... , 
- _

Step 2: Set I := lcm(kl, ... , km).
Step 3: Compute with Lemma 4.3 a bound M for the absolute size of

the coefficients of g.

Step 4: Factorize f - fl ... fr mod pk over an unramified p-adic exten-
sion of degree I of Qp, where pk &#x3E; 2M.

Step 5: Set := I 1  i  r, it exists a f E Aj with

(fi mod m).
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Step 6: For i = 1, ... , m compute the product b2 of the zeros, which are
~ 

contained in Di.

Step 7: Compute Ji (modulo p k). If the absolute value of this sum
~ 

is larger than M, go to step 12.

Step 8: Compute g(t) := 6i) (modulo pk).
Step 9: If the absolute value of one of the coefficients of g is larger than
~ 

M, go to step 12.

Step 10: If g modulo p has multiple factors, set f (t) := f (t + 1) and go
to step 3.

Step 11: Compute f (t) := f (t+ 1), bi g(t) 
b2) and a bound M for the coefficients of g. Test, if the absolute
size of coefficients of g are smaller than M. In this case print
potential generating polynomial g and terminate.

Step 12: Print, that O1, ... , Am is not a block system and terminate.

The correctness of the algorithm follows from the above considerations.
We remark that it is advisable to store a lot of values. The inertia degrees
of the potential block systems are already known. The bound M in step 3
only depends on f and the degree of the subfield.
The most critical part of the algorithm is the factorization of f over

an unramified p-adic extension of degree 1. It is important to compute
this factorization only once and store the result for further use. An other
question is how to choose k in step 4. Since we use quadratic lifting it is
useful to choose k of the form 2k. It is necessary to choose k in a way that
p2 k&#x3E; 2M. But practical experience shows that it is better to choose k such
that p*’ z M4 holds. The reason is that we have a better chance to detect
in step 7 or 9 that O1, ... , Am is not a block system. We already remarked
that it is possible to detect a "wrong" block system during the embedding
algorithm, but it turns out that this is very expensive. To avoid this we
have inserted step 11 in the algorithm. This is another necessary condition
which must hold if A i,... , Am is a block system. We know no example
that passes all these tests but it is not a block system. We use these tests
only to get better running times. The results will be proved if we compute
the embedding.

5. COMPUTATION OF THE EMBEDDING OF THE SUBFIELDS

In this section we give an algorithm to compute an embedding of the
computed potential subfields L in the given field E. As in the preceding
sections let E = Q(a), f be the minimal polynomial of a, and {a =
a1,... , be the roots of f . Furthermore let L = Q(,3) and g be the
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minimal polynomial of 0. This is not a general algorithm to test if a number
field L is contained in a number field E. We use the known potential block
system Ai , ... , Am to compute the embedding. If we are able to compute
an embedding we have a proof that L is indeed a subfield of E. Otherwise
we get a proof that the potential subfield L is no subfield. We want to
compute a polynomial h E Q[t] such that h(a) _ fl. The coefficients of h
are not necessarily in Z since in general a equation order is not integrally
closed.

To simplify the notation we suppose that g has been computed without
substitution of f . Then we know the following equations for the zeros
(31, ... , 0,. of g:

Therefore the polynomial h has the following property:

We know the value of h at n distinct points. Since h is of degree at most
n - 1, it is uniquely defined this way. We have computed the zeros of
the blocks in an unramified p-adic extension. In a first step we want to
compute a modulo p approximation which can be done in the residue class
field. Let {Õ1,... , be the zeros of f in a suitable finite field IFq. Now
we can compute a modulo p approximation of h by solving a linear system
of equations or by using the formula of Lagrange. Both methods have the
disadvantage that it is necessary to compute all roots of f in IFQ . In the
above algorithms we have worked in extensions Fq lFp of degree 1 = lcm(ki)
which is in general less than the degree of F4IFp. Now we give a method to
compute a modulo p approximation for h which only needs a factorization
of f in Fq [t]. Let ~1,... , Am be the potential block system in polynomial
representation. That means that all zeros of one polynomial in Ai lie in the
same block. Thus we are able to compute the following block polynomials:

We denote with j3j the zeros of 9 = g mod p. Now we compute with the
extended Euclidean algorithm for polynomials over finite fields polynomials
cj, dj E 1F9 [t] with

Now we define:



265

For di e Aj and we have: = 0. Thus we get:
ho (,5i) since = 0.

The last thing to do is to give a bound for the coefficients of h. Since
the coefficients are in Q we need a bound for the absolute values of the
denominator and numerator of the coefficients. A proof of the following
lemma can be found in [8, 13, 19].
Lemma 5.1. The absolute values of the numerators of h are less than M
with

where and denote the biggest absolute value of a zero of g resp.
f . The absolute value of the denominators of h is bounded by VI disc(f) I.
Now we are able to give the algorithm.

Algorithm 5.2. (Compute Embedding)
Input: Generating polynomial f of a field E. Polynomial g of a po-
- 

tential subfield L computed with algorithm ,4.7. Corresponding
potential block system O1, ... , Am in polynomial representation
and p E P with p f disc(/) disc(g).

Output: Embedding polynomial h E Q[t], if L is a subfield of E, other-
wise the message that Am is not a block system.

Step 1: Compute ho with formulae (13).

Step 2: Set 00 - ho (a) mod p.

Step 3: Compute M with Lemma 5.1 and such that p2k &#x3E; 2M.

Step 4: Compute using Newton 2.13 an element,8 with g(,3) = 0.
If 3 is not computable, return that O1, ... , Am is not a block
system.

Step 5: Compute h E Q[t] with h(a) = /3 and print h.

6. THE WHOLE ALGORITHM

Now we are able to give the whole algorithm to compute subfields of
degree m.

Algorithm 6.1. (Computation of subfields of degree m.)
Input: A generating polynomial f of a number field E and a degree m.

Output: The list of all subfields L of E of degree m given by (g, h)

Step 1: Set n := deg( f ) and choose a prime p &#x3E; n not dividing the
discriminant of f .
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Step 2: Set L :=ComputePotentialBlockSystems(f, ,n,p).
Step 3: If some block systems are known, call the Intersection algorithm

3.22 to reduce L.

Step 4: Set result:= 0.

Step 5: For each B in L do
1. Set g =Compute GeneratingPolynomial(f , p, B).
2. If g is a (potential) generating polynomial then

set h :=ComputeEmbedding( f, g, B, p).
3. If (g, h) defines a subfield, add it to result.
4. Call the Intersection algorithm to reduce L.

Step 6: Print result.

In general the above algorithm works for every prime p &#x3E; n not dividing
the discriminant. The running time of the algorithm depends strongly on
the choice of the prime. When choosing the prime we have to consider two
points, the number of potential block systems and the degree of the p-adic
fields. Unfortunately the number of potential block systems decreases if
the degree of the p-adic fields increases. In our implementation we choose
the prime p in a such way that the number of potential block systems is
minimal. In most cases this seems to be the best choice.
To generate all potential block systems in Step 2 it is not a good idea.

In order to avoid memory problems it is better to divide the computation
of potential block systems in packages. First we apply Steps 3-5 to the
potential block systems of the first package, then to the second package
and so on. In our implementation we use the output of Algorithm 3.14 as a
package. This has the advantage that the intersection algorithm can easily
be applied to such a package.

7. CONNECTIONS BETWEEN BLOCK SYSTEMS AND PRIME IDEAL
DECOMPOSITION

In this section we give a connection between the prime ideal decomposi-
tion of a prime ideal in OL and the corresponding block system. This is not
used in the presented subfield algorithm. It gives a deeper insight in the
properties of subfields. Furthermore it explains the name inertia degree for
the ki corresponding to a block. The following connection is very useful
if we want to compute special subfields. For instance if we only want to
compute normal subfields the following shows that all inertia degrees of a
block system must be the same.

Let ð1,... , Am be a block system of G = Gal( f ) and p a prime with
p t disc( f ). Let 7r = be the corresponding permutation (Gal( f ) =
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(7r)). The block system does not depend on 1r, but the block clusters do.
We proved that all blocks in a block cluster have the same inertia degree.

Theorem 7.1. With the above notations it follows that POL = 
where r is the number of block clusters corresponding to 7r. The inertia

degrees of the block clusters coincide with the inertia degrees of the prime
ideals pi (1  i  r).

Proof. Let as defined in ( 11 ) . The number

and the degree of the factors of § E coincide with the number and the

inertia degrees of the prime ideals of oL over p. Let O1, ... , is be an arbi-
trary block cluster of the block system of inertia degree k. We must show

s 
_

that 91 - 6j) e Zp[t] is irreducible. From the supposition we know
i=1

that the 8i are pairwise distinct. Let Q be the Frobenius automorphism of
an unramified extension of degree k over Qp . Then we get (if we sort the
roots), that 8i = for 1 ~ i  s holds. This proves that §i E 
is irreducible and the corresponding prime ideal has inertia degree k. 0

8. EXAMPLES

In this section we give several examples demonstrating the efficiency
of our algorithm. These algorithms were implemented in the computer
algebra system KASH [6]. All computations were done on HP 9000/735
under HP-UX 9.05.

First we compare the running times with the algorithms presented in
[10, 12]. This demonstrates the development of the subfield algorithm.
Other methods [9, 1, 15] were compared in [12] resp. [9]. It turned out that
the methods in [12] are much more efficient than the other ones.

First we compare this algorithm with the algorithm developed by the
author in his master thesis [10]. We have computed the subfields of 1112
imprimitive fields of degree 9. These fields have been taken from a table of
[7]. Explicit examples are given in [10]. We only give the running times.
We denote with rl the number of real zeros.
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The following table can be found in [9]. In this article a lot of subfield

algorithms were compared. In [12] it has been shown that the other methods
are limited to small examples. We only compare our algorithm (new) with
the one presented in [12] (old).

The eleventh polynomial in the table has the following form:

An other example which was computed in [12] is a field E/Q of degree
24 with Galois group 64. The field is generated by a root of

A list of generating polynomials can be found in [12]. The running time
there was 3641 sec. Now we are able to compute all subfields within 105
sec.
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Now we look at an example with a huge number of potential block sys-
tems. The following field E of degree 60 was computed as splitting field of
a field of degree 5 with Galois group 2ls. The main problem is neither the
degree nor the size of the coefficients. There are only cycle decompositions
with small cycles. We have the following factorization shapes:

1. 60 factors of degree 1,
2. 30 factors of degree 2,
3. 20 factors of degree 3,
4. 12 factors of degree 5.
There are no subfields of degree 2,3, and 4, which can be figured out

easily. If we choose a prime corresponding to 12 factors of degree 5, we
have to consider 511 potential block systems to compute subfields of degree
5. Without any additional information this would take about half a year
computing time. We are able to complete this example if we know some
subfields. With this information we can compute block systems and use
the intersection algorithm 3.22.

To compute the splitting field of degree 60 we started with a field of
degree 5 generated by a zero of t5 + t4 - 2t3 -f- t2 + t + 1. If we factor
this polynomial over the number field generated by a root of it, we get
a degree 4 factor. Now we computed a primitive element for the degree
20 extension. After this we used the OrderShort function of KASH [6] to
compute a shorter representation. This function works in a similar way to
the function polred in PARI. We have the following polynomial:

As a last step we computed the degree 60 polynomial. An important
fact is that we are able to compute the embeddings of the degree 5 and 20
fields into E. The field E is generated by a zero of
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To save space we do not give the subfields here. In the following table
we give a statistic about the number of subfields and the running times.
The running time for the subfields increases if the degree of the subfields

becomes larger. The reason is that the embedding algorithm becomes more
expensive. The exception is the degree 5 case. At this point only two sub-
fields are known which means that many potential block systems must be
tested. The computation of the field E including the embeddings of the
two known subfields took about one hour.
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