JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ALEKSANDAR IVIĆ

On the number of subgroups of finite abelian groups

Journal de Théorie des Nombres de Bordeaux, tome 9, n° 2 (1997), p. 371-381

http://www.numdam.org/item?id=JTNB 1997 9 2 371 0>

© Université Bordeaux 1, 1997, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

On the number of subgroups of finite abelian groups

par Aleksandar IVIĆ

RÉSUMÉ. Soit

$$T(x) = K_1 x \log^2 x + K_2 x \log x + K_3 x + \Delta(x),$$

où T(x) désigne le nombre de sous groupes des groupes abéliens dont l'ordre n'excède pas x et dont le rang n'excède pas 2, et $\Delta(x)$ est le terme d'erreur. On démontre que

$$\int_1^X \Delta^2(x) \, \mathrm{d} x \ll X^2 \log^{31/3} X, \int_1^X \Delta^2(x) \, \mathrm{d} x = \Omega(X^2 \log^4 X).$$

ABSTRACT. Let

$$T(x) = K_1 x \log^2 x + K_2 x \log x + K_3 x + \Delta(x),$$

where T(x) denotes the number of subgroups of all Abelian groups whose order does not exceed x and whose rank does not exceed 2, and $\Delta(x)$ is the error term. It is proved that

$$\int_1^X \Delta^2(x) \, \mathrm{d} x \ll X^2 \log^{31/3} X, \quad \int_1^X \Delta^2(x) \, \mathrm{d} x = \Omega(X^2 \log^4 X).$$

1. Introduction

Let

$$t_2(n) = \sum_{|\mathcal{G}| = n, r(\mathcal{G}) \le 2} \tau(\mathcal{G}), H(s) = \sum_{n=1}^{\infty} t_2(n) n^{-s} \quad (\Re e > 1),$$

where $\tau(\mathcal{G})$ denotes the number of subgroups of a finite Abelian group $\mathcal{G}, r(\mathcal{G})$ is the rank of \mathcal{G} , and $|\mathcal{G}|$ is the order of \mathcal{G} . The group \mathcal{G} has rank r if

$$\mathcal{G} \cong \mathbb{Z}/n_1\mathbb{Z} \otimes \cdots \otimes \mathbb{Z}/n_r\mathbb{Z},$$

¹⁹⁹¹ Mathematics Subject Classification. 11N45, 11L07, 20K01,20K27. Manuscrit reçu le 5 juin 1997

where $n_j \mid n_{j+1}$ for $j = 1, \dots, r-1$. We set

$$T(x) = \sum_{n \le x} t_2(n) = \sum_{|\mathcal{G}| \le x, r(\mathcal{G}) \le 2} \tau(\mathcal{G})$$

so that one has

(1.1)
$$T(x) = K_1 x \log^2 x + K_2 x \log x + K_3 x + \Delta(x),$$

where K_j are effective constants and $\Delta(x)$ is to be considered as the error term in the asymptotic formula for T(x). One has the Dirichlet series representation (this is due to G. Bhowmik [1]; the generating Dirichlet series for Abelian groups of rank ≥ 3 are more complicated)

(1.2)
$$H(s) = \zeta^2(s)\zeta^2(2s)\zeta(2s-1)\prod_p (1+p^{-2s}-2p^{-3s})$$
 ($\Re e > 1/2$).

Using (1.2) and the estimate in the four-dimensional asymmetric divisor problem of H.-Q. Liu [6], G. Bhowmik and H. Menzer [2] obtained the bound

$$\Delta(x) \ll x^{c+\varepsilon}$$

with c=31/43=0.72093... Recently H. Menzer [6] used two new estimates in the three-dimensional asymmetric divisor problem to prove (1.3) with the better value c=9/14=0.64285..., and this is further improved in the forthcoming paper by G. Bhowmik and J. Wu [3] to $\Delta(x) \ll x^{5/8} \log^4 x$. Note that we can write (1.2) as

(1.4)
$$H(s) = \zeta^{2}(s)\zeta^{3}(2s)\zeta(2s-1)U(s),$$
$$U(s) = \prod_{p} (1 - 2p^{-3s} - p^{-4s} + 2p^{-5s}),$$

where the Dirichlet series for U(s) is absolutely convergent for $\Re s > 1/3$. This prompts one to think that in (1.1) there should be a new main term corresponding to the pole of order 3 of H(s) at s = 1/2, namely that we should have

(1.5)
$$\Delta(x) = x^{1/2} (C_1 \log^2 x + C_2 \log x + C_3) + E(x),$$
$$E(x) = o(x^{1/2} \log^2 x) \ (x \to \infty),$$

where $C_1 \neq 0$ (one cannot hope for $E(x) = o(x^{1/2})$ since in [3] it was shown that $E(x) = \Omega(x^{1/2}(\log \log x)^6)$ holds). Even if the relation (1.5) is perhaps too optimistic, it is very likely that $\Delta(x) \ll x^{1/2+\varepsilon}$ holds, and that $\Delta(x)$ cannot be of order lower than $x^{1/2}\log^2 x$. In fact H. Menzer [5] conjectured that

$$\Delta(x) = \Omega(x^{1/2} \log^2 x).$$

This was proved by Bhowmik and Wu [3], which is a corollary of their bound

$$\int_0^X E(x) \, \mathrm{d}x \, \ll \, X^{11/8 + \epsilon}.$$

Since heuristically in (1.5) the terms $x^{1/2}(C_1\log^2 x + C_2\log x + C_3)$ are the residue of $H(s)x^s/s$ at s=1/2 it is not difficult to see that the constant C_1 is negative, so actually in (1.6) Ω is Ω_- , i.e. the Ω -result of Bhowmik and Wu is

$$\liminf_{x \to \infty} \frac{\Delta(x)}{x^{1/2} \log^2 x} < 0.$$

The object of this note is to investigate $\Delta(x)$ in mean square, and we shall prove two fairly precise results contained in

THEOREM 1. We have

THEOREM 2. We have

(1.8)
$$\int_{1}^{X} \Delta^{2}(x) dx = \Omega(X^{2} \log^{4} X).$$

Remark 1. The omega-result (1.8) implies another proof of Menzer's conjecture (1.6).

Remark 2. It is plausible to conjecture that, for $X \to \infty$ and suitable C > 0, one has

$$\int_1^X \Delta^2(x) \, dx \sim CX^2 \log^4 X,$$

although this seems to be out of reach at present.

Remark 3. It will be clear from the proof of Theorem 2 that the method is capable of generalization to the case where the error term in question corresponds to the Dirichlet series generated by suitable factors of the form $\zeta(as+b)$ (a,b) integers).

2. Proof of the upper bound estimate

To prove Theorem 1 we start from the relation

(2.1)
$$\int_0^\infty \Delta^2(x) x^{-2c-1} \, dx = \frac{1}{2\pi} \int_{-\infty}^\infty \left| \frac{H(c+it)}{c+it} \right|^2 \, dt,$$

where c > 0 is a suitable constant. The formula (2.1) follows from the properties of Mellin transforms, similarly as in the case of the classical divisor problem (see (13.23) on p. 357 of [4]). If the integral on the left-hand side of (2.1) converges, so does the integral on the right-hand side and conversely. We shall need the following facts about $\zeta(s)$ (see [4] for proofs):

$$\zeta(\sigma + it) \ll \left(t^{C(1-\sigma)^{3/2}} + 1\right) \log^{2/3} t \qquad (1/2 \le \sigma \le 2, t \ge t_0 > 0, C > 0),$$

(2.2)
$$\zeta(s) = \chi(s)\zeta(1-s),$$

$$t^{1/2-\sigma} \ll |\chi(s)| \ll t^{1/2-\sigma} \quad (s = \sigma + it, \ t \ge t_0 > 0),$$

$$\int_{1}^{T} |\zeta(\sigma + it)|^{4} dt \ll T \log^{4} T \quad (1/2 \le \sigma \le 1).$$

The last bound follows e.g. from Th. 4.4 and Th. 5.2 of [4]. Now we take $c = 1/2 + 1/\log X$, $X \ge X_0 > 0$. Then from (1.4) and (2.1) we obtain first

(2.3)
$$\int_{X}^{2X} \Delta^{2}(x) dx \\ \ll X^{2} \int_{-\infty}^{\infty} |\zeta^{2}(c+it)\zeta(2c-1+2it)\zeta^{3}(2c+2it)|^{2}|c+it|^{-2} dt.$$

Let

$$(2.4) U := \exp\left(10\log X \log \log X\right).$$

By symmetry we have

$$\int_{-\infty}^{\infty} \le 2 \left(\int_{0}^{1} + \int_{1}^{U} + \int_{U}^{\infty} \right) = 2I_{1} + 2I_{2} + 2I_{3},$$

say. Since $\zeta(s) \ll 1/|s-1|$ near s=1, we have $I_1 \ll \log^6 X$. Using (2.2) it follows that $(C_1 > 0 \text{ is a constant})$

$$I_{2} \ll \int_{1}^{U} t^{-1-4/\log X} |\zeta(\frac{1}{2} + \frac{1}{\log X} + it)|^{4} \times$$

$$\times |\zeta(1 - \frac{2}{\log X} + 2it)|^{2} |\zeta(1 + \frac{2}{\log X} + 2it)|^{6} dt$$

$$\ll \int_{1}^{U} |\zeta(\frac{1}{2} + \frac{1}{\log X} + it)|^{4} t^{-1 - \frac{4}{\log X} + C_{1}(\log X)^{-3/2}} \log^{16/3} t dt$$

$$\ll \int_{1}^{U} |\zeta(\frac{1}{2} + \frac{1}{\log X} + it)|^{4} t^{-1 - \frac{3}{\log X}} \log^{16/3} t dt.$$

Let

$$W(t) := \int_1^t |\zeta(\frac{1}{2} + \frac{1}{\log X} + iv)|^4 dv, \quad f(t) := t^{-1 - \frac{3}{\log X}} \log^{16/3} t.$$

By integration by parts it follows that

$$I_2 \ll \int_1^U f(t) \, dW(t) \ll W(U)f(U) + \Big| \int_1^U W(t)f'(t) \, dt \Big|.$$

But we have

$$W(U)f(U) \ll U^{-3/\log X} \log^{28/3} U \ll e^{-30\log\log X} (\log X \log\log X)^{28/3} \ll 1$$

and

$$\int_{1}^{U} W(t)f'(t) dt \ll \int_{1}^{U} t^{-1-3/\log X} \log^{28/3} t dt$$

$$= \log^{31/3} X \int_{0}^{10 \log \log X} e^{-3v} v^{28/3} dv \ll \log^{31/3} X$$

with the change of variable $v = \log t / \log X$. We also have

$$\int_{M}^{2M} \ll \int_{M}^{2M} |\zeta(\frac{1}{2} + \frac{1}{\log X} + it)|^{4} t^{-1 - \frac{4}{\log X} + C_{1}(\log X)^{-3/2}} \log^{16/3} t \, dt$$
$$\ll M^{-2/\log X} \log^{28/3} M \leq M^{-1/\log X}$$

for $M \geq U$, as given by (2.4). Hence $(M = 2^{j-1}U)$

$$I_3 = \int_U^{\infty} = \sum_{j=1}^{\infty} \int_{2^{j-1}U}^{2^j U} \ll \sum_{j=1}^{\infty} \exp(-\frac{j \log 2 + \log U}{\log X}) \ll 1.$$

Therefore

$$I_1 + I_2 + I_3 \ll (\log X)^{31/3}$$

and (2.3) gives

$$\int_{X}^{2X} \Delta^{2}(x) \, dx \, \ll \, X^{2}(\log X)^{31/3}.$$

Replacing X by $X2^{-j}$, $j \in \mathbb{N}$ and summing the resulting estimates we obtain (1.7).

3. Proof of the omega-result

To prove the omega-result of Theorem 2 we shall use the method used in proving Theorem 2 of [5], with the necessary modifications. Namely in [5] the generating Dirichlet series was of the form

$$(3.1) \zeta(a_1s)\zeta(a_2s)\cdots\zeta(a_ks),$$

where $1 \leq a_1 \leq a_2 \leq \ldots \leq a_k$ are integers, with k possibly infinite (e.g the generating series of the function a(n), the number of non-isomorphic Abelian groups with n elements, is (3.1) with $a_j = j, k = \infty$). The Dirichlet series H(s) (see (1.4)) is clearly not of the form (3.1), since it contains the factor $\zeta(2s-1)$. Writing

$$H(s) = \zeta(2s-1)V(s), \quad V(s) = \sum_{n=1}^{\infty} v(n)n^{-s} \quad (\Re e > 1),$$

it is seen that $v(n) \ll_{\varepsilon} n^{\varepsilon}$, and consequently we obtain

$$(3.2) t_2(n) = \sum_{k^2 m = n} k v(m) \ll n^{\frac{1}{2} + \frac{\varepsilon}{2}} \sum_{k^2 m = n} 1 \ll n^{\frac{1}{2} + \frac{\varepsilon}{2}} d(n) \ll n^{\frac{1}{2} + \varepsilon},$$

where d(n) is the number of divisors of n. We remark that Bhowmik and Wu [3] proved the sharper bound $t_2(n) \ll n^{1/2}(\log \log n)^6$, but for our purposes (3.2) is more than sufficient. As on p. 82 of [5] we start from the Mellin inversion integral (see also p. 122 of [4])

(3.3)
$$e^{-U^h} = \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} U^{-w} \Gamma(1+\frac{w}{h}) \frac{\mathrm{d}w}{w},$$

where h, U > 0. We shall take $T^{1-\delta} \le t \le T, h = \log^2 T, s = \frac{1}{2} + it, Y = T^B$, where $\delta > 0$ is a sufficiently small constant and B > 1 is a suitable constant. Setting U = n/Y we obtain from (3.3), by termwise integration,

$$\sum_{n=1}^{\infty} t_2(n) n^{-s} e^{-(n/Y)^h} = \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} H(s+w) Y^w \Gamma(1+\frac{w}{h}) \frac{\mathrm{d}w}{w}.$$

We shift the line of integration to $\Re w = -1/4$ and apply the residue theorem. The pole w = 0 of the integrand gives the residue H(s), while the poles of H(s+w) give a total contribution which is O(1) in view of Stirling's formula for the gamma-function. The integral along the line $\Re w = -1/4$ is bounded, and we obtain

(3.4)
$$H(s) = \sum_{n=1}^{\infty} t_2(n) n^{-s} e^{-(n/Y)^h} + O(1)$$
$$= \sum_{n \le T} t_2(n) n^{-s} e^{-(n/Y)^h} + \sum_{T \le n \le 2Y} t_2(n) n^{-s} e^{-(n/Y)^h} + O(1).$$

The idea of proof is as follows. We shall prove that

(3.5)
$$\int_{T^{1-\delta}}^{T} |H(\frac{1}{2} + it)|^2 t^{-2} dt \gg \log^5 T,$$

and then use (3.4) to show that (3.5) gives a contradiction if we assume that (1.8) does not hold, namely that we have

(3.6)
$$\int_1^X \Delta^2(x) \, \mathrm{d}x = o(X^2 \log^4 X) \qquad (X \to \infty).$$

To prove (3.5) it is enough to prove that

(3.7)
$$\int_{M}^{2M} |H(\frac{1}{2} + it)|^{2} t^{-2} dt \gg \log^{4} M,$$

since (3.7) gives $(M = T2^{-j}, N = [\delta \log T/4])$

$$\int_{T^{1-\delta}}^{T} |H(\frac{1}{2} + it)|^2 t^{-2} dt \ge \sum_{j=1}^{N} \int_{T2^{-j-1}}^{T2^{-j}} |H(\frac{1}{2} + it)|^2 t^{-2} dt$$

$$\gg \log T \cdot \log^4 T = \log^5 T.$$

Using (1.4) and (2.2) we have

$$\int_{M}^{2M} |H(\frac{1}{2} + it)|^{2} t^{-2} dt$$

$$\gg M^{-2} \int_{M}^{2M} |\zeta(\frac{1}{2} + it)|^{4} |\zeta(1 + 2it)|^{6} |\zeta(2it)|^{2} dt$$

$$\gg M^{-1} \int_{M}^{2M} |\zeta^{2}(\frac{1}{2} + it)\zeta^{4}(1 + 2it)|^{2} dt.$$

Now let $F(s) := \zeta^2(s)\zeta^4(2s)$ and use a general lower bound for mean values of Dirichlet series (see e.g. K. Ramachandra [8], [9]; note that the factor 1/n is missing in (4.2) of [5]):

$$\frac{1}{M} \int_{M}^{2M} |F(\frac{1}{2} + it)|^2 dt \gg \sum_{n \le M/100} \frac{|c(n)|^2}{n} \left(1 - \frac{\log n}{\log M} + \frac{1}{\log \log M} \right),$$

where $F(s) = 1 + \sum_{n=2}^{\infty} c(n) n^{-s}$ converges for $\Re e = \sigma \ge \sigma_0$, F(s) is regular for $\Re e \ge 1/2$, $M \le t \le 2M$ and both $F(s) \ll e^{M^D}$ and $c(n) \ll M^D$ hold for some D > 0. In our case

$$c(n) = \sum_{km^2-n} d(k)d_4(m) \ge d(n),$$

where the divisor function $d_4(n)$ is generated by $\zeta^4(s)$. Hence (3.8) yields

$$\frac{1}{M} \int_{M}^{2M} |H(\frac{1}{2} + it)|^{2} t^{-2} dt \gg \sum_{n \le \sqrt{M}} \frac{c^{2}(n)}{n} \left(1 - \frac{\log n}{\log M} + \frac{1}{\log \log M} \right)$$
$$\gg \sum_{n \le \sqrt{M}} \frac{d^{2}(n)}{n} \gg \log^{4} M$$

by partial summation from $\sum_{n \leq x} d^2(n) \sim Cx \log^3 x$ (C > 0). Thus (3.5) is proved, and it remains to see how it leads to the proof of Theorem 2.

To obtain the left-hand side of (3.5) from (3.4), we shall divide (3.4) by t, square and integrate over $T^{1-\delta} \leq t \leq T$. We use the mean value theorem for Dirichlet polynomials (see Theorem 5.2 of [4]) to deduce that

$$\int_{T^{1-\delta}}^{T} \left| \sum_{n \le T} t_2(n) n^{-1/2 - it} e^{-(n/Y)^h} \right|^2 t^{-2} dt$$

$$\ll T^{2\delta - 2} \sum_{j \ge 1} 2^{-2j} \int_{2^{j-1} T^{1-\delta}}^{2^j T^{1-\delta}} \left| \sum_{n \le T} t_2(n) n^{-1/2 - it} e^{-(n/Y)^h} \right|^2 dt$$

$$\ll T^{2\delta - 2} \sum_{j \ge 1} 2^{-2j} \sum_{n \le T} t_2^2(n) n^{-1} (n + 2^j T^{1-\delta})$$

$$\ll T^{2\delta - 3/2 + \varepsilon/2} \sum_{j \ge 1} 2^{-2j} \sum_{n \le T} t_2(n) n^{-1} (n + 2^j T^{1-\delta})$$

$$\ll T^{2\delta + \varepsilon - 1/2} \ll T^{-\varepsilon}$$

for δ sufficiently small, where we used the bound (3.2) and the trivial bound

$$\sum_{n \le x} t_2(n) \ll xH(1 + \frac{1}{\log x}) \ll x\zeta^2(1 + \frac{1}{\log x})\zeta(1 + \frac{2}{\log x}) \ll x\log^3 x.$$

It remains to evaluate

(3.10)
$$I := \int_{T^{1-\delta}}^{T} \left| \sum_{T < n \le 2Y} t_2(n) n^{-1/2 - it} e^{-(n/Y)^h} \right|^2 t^{-2} dt.$$

This is done again by the use of the mean value theorem for Dirichlet polynomials. However first we integrate by parts and use (1.1) to obtain

$$\sum_{T < n \le 2Y} t_2(n) n^{-1/2 - it} e^{-(n/Y)^h} = \int_T^{2Y} x^{-1/2 - it} e^{-(x/Y)^h} dT(x)$$

$$+ \int_T^{2Y} (K_1 \log^2 x + (2K_1 + K_2) \log x + K_2 + K_3) x^{-1/2 - it} e^{-(x/Y)^h} dx$$

$$+ \int_T^{2Y} x^{-1/2 - it} e^{-(x/Y)^h} d\Delta(x) = I_1 + I_2,$$

say. By the first derivative test (Lemma 2.1 of [4]) it is seen that $I_1 \ll YT^{-1/2}t^{-1}\log^2 T$. Hence the contribution of I_1 to I will be

$$\ll \int_{T^{1-\delta}}^{\infty} t^{-4} Y^2 T^{-1} \log^4 T \, dt \ll Y^2 T^{3\delta-4} \log^4 T \ll T^{-\varepsilon}$$

for $B < 2 - \frac{3}{2}\delta$. In I_2 we use integration by parts and the bound $\Delta(x) \ll x^{2/3}$ (see (1.3)) to obtain

$$I_2 = O(T^{1/6}) + \int_T^{2Y} \Delta(x) e^{-(x/Y)^h} \left(h\left(\frac{x}{Y}\right)^h + \frac{1}{2} + it \right) x^{-3/2 - it} dx.$$

The contribution of the O-term to I will be negligible, and so will be also the contribution of $h(x/Y)^h + 1/2$ if $B < 3 - 3\delta$. The main contribution to I from I_2 will be from the term it. This is

$$\begin{split} & \int_{T^{1-\delta}}^{T} \left| \int_{T}^{2Y} \Delta(x) e^{-(x/Y)^{h}} x^{-3/2 - it} \, dx \right|^{2} \, dt \\ &= O(1) + \int_{T^{1-\delta}}^{T} \left| \sum_{[T] \le n \le [2Y]} \int_{n}^{n+1} \Delta(x) e^{-(x/Y)^{h}} x^{-3/2 - it} \, dx \right|^{2} \, dt \\ &= O(1) + \int_{T^{1-\delta}}^{T} \left| \int_{0}^{1} \sum_{[T] \le n \le [2Y]} \Delta(v+n) e^{-((v+n)/Y)^{h}} (v+n)^{-3/2 - it} \, dv \right|^{2} \, dt. \end{split}$$

By using the Cauchy-Schwarz inequality for integrals and inverting the order of integration it is seen that the last integral does not exceed

$$\int_{0}^{1} \int_{T^{1-\delta}}^{T} \left| \sum_{[T] \le n \le [2Y]} \Delta(v+n) e^{-((v+n)/Y)^{h}} (v+n)^{-3/2-it} \right|^{2} dt dv$$

$$\ll \int_{0}^{1} \sum_{[T] \le n \le [2Y]} \Delta^{2} (v+n) e^{-2((v+n)/Y)^{h}} (v+n)^{-3} (n+T) dv$$

$$\ll \int_{[T]}^{[2Y]+1} \Delta^{2} (x) x^{-2} dx,$$

where we used again the mean value theorem for Dirichlet polynomials. If (3.6) holds, then obviously also

$$\int_{M}^{2M} \Delta^{2}(x) dx = o(M^{2} \log^{4} M) \qquad (M \to \infty),$$

consequently we finally obtain from (3.5) $(M = [T]2^{j-1}, Y = T^B)$

$$\begin{split} \log^5 T &\ll \int_{T^{1-\delta}}^T |H(\frac{1}{2}+it)|^2 t^{-2} \, \mathrm{d}t \ll 1 + \int_{[T]}^{[2Y]+1} \Delta^2(x) x^{-2} \, \mathrm{d}x \\ &\ll 1 + \sum_{j=1}^{O(\log T)} \int_{[T]2^{j-1}}^{[T]2^j} \Delta^2(x) x^{-2} \, \mathrm{d}x \ll 1 + \sum_{j=1, M=[T]2^{j-1}}^{O(\log T)} M^{-2} \int_{M}^{2M} \Delta^2(x) \, \mathrm{d}x \\ &\ll 1 + \sum_{j=1}^{O(\log T)} o(\log^4 T) \, = \, o(\log^5 T), \end{split}$$

which is the contradiction that proves Theorem 2.

References

- [1] G. Bhowmik, Average order of certain functions connected with arithmetic of matrices, J. Indian Math. Soc. 59 (1993), 97-106.
- [2] G. Bhowmik and H. Menzer, On the number of subgroups of finite Abelian groups, Abh. Math. Sem. Univ. Hamburg, in press.
- [3] G. Bhowmik and J. Wu, On the asymptotic behaviour of the number of subgroups of finite abelian groups, Archiv der Mathematik 69 (1997), 95-104.
- [4] A. Ivić, The Riemann zeta-function, John Wiley & Sons, New York (1985).
- [5] A. Ivić, The general divisor problem, J. Number Theory 27 (1987), 73-91.
- [6] H.-Q. Liu, Divisor problems of 4 and 3 dimensions, Acta Arith. 73 (1995), 249-269.
- [7] H. Menzer, On the number of subgroups of finite Abelian groups, Proc. Conf. Analytic and Elementary Number Theory (Vienna, July 18-20, 1996), Universität Wien & Universität für Bodenkultur, Eds. W.G. Nowak and J. Schoißengeier, Wien (1996), 181-188.
- [8] K. Ramachandra, Progress towards a conjecture on the mean value of Titchmarsh series, Recent Progress in Analytic Number Theory, Academic Press, London 1 (1981), 303-318.
- [9] K. Ramachandra, On the Mean-Value and Omega-Theorems for the Riemann zetafunction, Tata Institute of Fund. Research, Bombay, 1995.

Aleksandar IVIĆ Katedra Matematike RGF-A Universiteta u Beogradu Djušina 7, 11000 Beograd SERBIA (YUGOSLAVIA)

e-mail: aleks@ivic.matf.bg.ac.yu